GetDP

GetDP Reference Manual

The documentation for GetDP 3.6.0 (development version)
A General environment for the treatment of Discrete Problems

2 April 2025

Patrick Dular
Christophe Geuzaine

Copyright (©) 1997-2022 P. Dular and C. Geuzaine, University of Liege

University of Liege

Department of Electrical Engineering
Institut d’Electricité Montefiore

Sart Tilman Campus, Building B28
B-4000 Liege

BELGIUM

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Short Contents

Obtaining GetDP 1
Copying conditions.t e 3
T OVeIVIEW . .ottt e)
2 Howtoread thismanual 9
3 Running GetDP 11
4 EXPTESSIONS « v v et ettt e e e 15
5 Objects ..ot 29
6 Typesforobjects i 43
7 Short examples 75
8 Complete examples. i 91
A Fileformats. 111
B Gmshexamples......... ... i 115
C Compiling the source code 119
D Frequently asked questions. 121
E Tipsand tricks 123
F' Version history i i 125
G Copyright and credits. i i 131
H License. e 133
Concept index.o e 141
Metasyntactic variable index 145

Syntax INdexot e 147

Table of Contents

Obtaining GetDP............. 1
Copying conditions 3
1 OVverview 5
1.1 Numerical tools as objects...........ooiiiiiiiiiii .. 5)
1.2 Which problems can GetDP actually solve?..................... 6
1.3 Bug reportso 7
2 How to read this manual....................... 9
2.1 Syntactic rules used in this document............, 9
3 Running GetDP 11
4 EXpressionsciiiiiiiiiiiiii... 15
4.1 COMIMENES « .« ottt e 15
4.2 Includes 15
4.3 Expressions definition 15
4.4 ConStants.ttt 16
4.5 OPerators. ...t 20
4.5. 1 Operator tyPeS. .ottt 20
4.5.2 Evaluation order i i 22
4.6 Functions............. i 22
4.7 Current values 23
4.8 ATgUMENTS. ...ttt 24
4.9 Run-time variables and registers............. oL 24
410 Fields. .o 25
4.11 Macros, loops and conditionals............... 27
5 Objects.o 29
5.1 Group: defining topological entities............................ 29
5.2 Function: defining global and piecewise expressions 30
5.3 Comnstraint: specifying constraints on function spaces and
formulations. ... 31
5.4 FunctionSpace: building function spaces...................... 32
5.5 Jacobian: defining jacobian methods.......................... 34
5.6 Integration: defining integration methods.................... 35
5.7 Formulation: building equations............... 36
5.8 Resolution: solving systems of equations 38
5.9 PostProcessing: exploiting computational results............. 39

5.10 PostOperation: exporting results................... 41

iv GetDP 3.6.0 (development version)

6 Types forobjects........................... ... 43
6.1 Types for Group . ..o 43
6.2 Types for FURCEIonovuttiii e 44

6.2.1 Math functions.......... .o i 44
6.2.2 Extended math functions............... 46
6.2.3 Green functions 47
6.2.4 Type manipulation functions........... 48
6.2.5 Coordinate functions............ ..o i, 50
6.2.6 Miscellaneous functions., 50
6.3 Types for Constraint........ccovviiuiiniiniiiiieaenn. 54
6.4 Types for FURCtionSpaceouuiiiiieeiiiie e, 55
6.5 Types for Jacobiam......oovuuiiin i 57
6.6 Types for Integrationovitiiiiiiiiniiiiean 58
6.7 Types for Formulationooueiiiiiiiinieenennenn.. 58
6.8 Types for ReSOLUtiOon. ..o vttt 59
6.9 Types for PoStProcessing.......cooviiuiiiiiiinienneannean.. 68
6.10 Types for PostOperationouueiiiieeinieennnen.n. 68

7 Short examples.................... L. 75
7.1 Constant expression examples...............ccoiiiiiiiina.... 75
7.2 Groupexamples...... i 75
7.3 Function exampleso 75
7.4 Constraint examples. ..., 7
7.5 FunctionSpace examples, 78

7.5.1 Nodal finite element spaces...............cviiiiii... 78
7.5.2 High order nodal finite element space..................... 78
7.5.3 Nodal finite element space with floating potentials........ 79
7.5.4 FEdge finite element space............ L. 79
7.5.5 FEdge finite element space with gauge condition 80
7.5.6 Coupled edge and nodal finite element spaces............. 80
7.5.7 Coupled edge and nodal finite element spaces for multiply
connected dOmainsc.ooiiiiiiiiiiiiii i 81
7.6 Jacobian exampleso 82
7.7 Integration examples.............o.iiiiiiiiiiiiiiiiiiiin.. 83
7.8 Formulation examples..........oouuuuuiiiiieeenniiiiiii.. 83
7.8.1 Electrostatic scalar potential formulation 83
7.8.2 Electrostatic scalar potential formulation with floating
potentials and electric charges, 84
7.8.3 Magnetostatic 3D vector potential formulation............ 84
7.8.4 Magnetodynamic 3D or 2D magnetic field and magnetic
scalar potential formulation................................. 85
7.8.5 Nonlinearities, Mixed formulations, 85
7.9 Resolutiom examples..........ouoiiiiiiiiiiii i 85
7.9.1 Static resolution (electrostatic problem) 85

7.9.2 Frequency domain resolution (magnetodynamic problem)

7.9.4 Nonlinear time domain resolution (magnetodynamic problem)

.. 87

7.9.5 Coupled formulations., 87

7.10 PostProcessing examples........ ... 88
7.11 PostOperation examples, 88
8 Complete examples............................ 91
8.1 Electrostatic problem 91
8.2 Magnetostatic problem........... i 98
8.3 Magnetodynamic problem......... i 103
Appendix A File formats...................... 111
A1l Input file format ... 111
A.2 Output file format........... 111
A2.1 File Copre’. o 112
A22 File ‘ires’ .o 112
Appendix B Gmsh examples.................. 115
Appendix C Compiling the source code..... 119
Appendix D Frequently asked questions..... 121
D1 The basics ..o 121
D.2 Imstallation.......... .. i 121
D3 Usage . oo 121
Appendix E Tips and tricks 123
Appendix F Version history 125
Appendix G Copyright and credits........... 131
Appendix H License........................... 133
Concept index................ 141
Metasyntactic variable index.................... 145

Syntax index 147

Obtaining GetDP 1

Obtaining GetDP

The source code and various pre-compiled versions of GetDP (for Windows, Linux and
MacOS) can be downloaded from http://getdp.info.

If you use GetDP, we would appreciate that you mention it in your work. References and
the latest news about GetDP are always available on http://getdp.info.

http://getdp.info
http://getdp.info

Copying conditions 3

Copying conditions

GetDP is “free software”; this means that everyone is free to use it and to redistribute it on
a free basis. GetDP is not in the public domain; it is copyrighted and there are restrictions
on its distribution, but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of GetDP that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of GetDP,
that you receive source code or else can get it if you want it, that you can change GetDP
or use pieces of GetDP in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of GetDP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GetDP. If GetDP is modified by someone else and passed on, we want their
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for GetDP are found in the General Public
License that accompanies the source code (see Appendix H [License|, page 133).
Further information about this license is available from the GNU Project webpage
http://wuw.gnu.org/copyleft/gpl-faq.html. Detailed copyright information can be
found in Appendix G [Copyright and credits], page 131.

If you want to integrate parts of GetDP into a closed-source software, or want to sell a
modified closed-source version of GetDP, you will need to obtain a different license. Please
contact us directly for more information.

http://www.gnu.org/copyleft/gpl-faq.html
http://geuz.org

Chapter 1: Overview 5

1 Overview

GetDP (a “General environment for the treatment of Discrete Problems”) is a scientific
software environment for the numerical solution of integro-differential equations, open to
the coupling of physical problems (electromagnetic, thermal, etc.) as well as of numerical
methods (finite element method, integral methods, etc.). It can deal with such problems of
various dimensions (1D, 2D or 3D) and time states (static, transient or harmonic).

The main feature of GetDP is the closeness between its internal structure (written in C), the
organization of data defining discrete problems (written by the user in ASCII data files) and
the symbolic mathematical expressions of these problems. Its aim is to be welcoming and of
easy use for both development and application levels: it consists of a working environment in
which the definition of any problem makes use of a limited number of objects, which makes
the environment structured and concise. It therefore gives researchers advanced developing
tools and a large freedom in adding new functionalities.

The modeling tools provided by GetDP can be tackled at various levels of complexity: this
opens the software to a wide range of activities, such as research, collaboration, education,
training and industrial studies.

1.1 Numerical tools as objects

An assembly of computational tools (or objects) in GetDP leads to a problem definition
structure, which is a transcription of the mathematical expression of the problem, and forms
a text data file: the equations describing a phenomenon, written in a mathematical form
adapted to a chosen numerical method, directly constitute data for GetDP.

The resolution of a discrete problem with GetDP requires the definition, in a text data file,
of the GetDP objects listed (together with their dependencies) in the following figure and
table.

o o o, o o ey

e
]

| ee— e L,
' _ Mﬁ / ::

%////////

)

, /ﬁ i
- . .
T ‘d Jacobian

e
.

1111111111111111111111111111111
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

4444444444
aaaaaaaa

6 GetDP 3.6.0 (development version)

Group -—=

Function Group

Constraint Group, Function, (Resolution)

FunctionSpace Group, Constraint, (Formulation), (Resolution)

Jacobian Group

Integration -—=

Formulation Group, Function, (Constraint), FunctionSpace,
Jacobian, Integration

Resolution Function, Formulation

PostProcessing Group, Function, Jacobian, Integration,
Formulation, Resolution
PostOperation Group, PostProcessing

The gathering of all these objects constitutes the problem definition structure, which is a
copy of the formal mathematical formulation of the problem. Reading the first column of
the table from top to bottom pictures the working philosophy and the linking of operations
peculiar to GetDP, from group definition to results visualization. The decomposition high-
lighted in the figure points out the separation between the objects defining the method of
resolution, which may be isolated in a “black box” (bottom) and those defining the data
peculiar to a given problem (top).

The computational tools which are in the center of a problem definition structure are formu-
lations (Formulation) and function spaces (FunctionSpace). Formulations define systems
of equations that have to be built and solved, while function spaces contain all the quantities,
i.e., functions, fields of vectors or covectors, known or not, involved in formulations.

Each object of a problem definition structure must be defined before being referred to by
others. A linking which always respects this property is the following: it first contains the
objects defining particular data of a problem, such as geometry, physical characteristics
and boundary conditions (i.e., Group, Function and Constraint) followed by those defin-
ing a resolution method, such as unknowns, equations and related objects (i.e., Jacobian,
Integration, FunctionSpace, Formulation, Resolution and PostProcessing). The pro-
cessing cycle ends with the presentation of the results (i.e., lists of numbers in various
formats), defined in PostOperation fields. This decomposition points out the possibility
of building black boxes, containing objects of the second group, adapted to treatment of
general classes of problems that share the same resolution methods.

1.2 Which problems can GetDP actually solve?

The preceding explanations may seem very (too) general. Which are the problems that
GetDP can actually solve? To answer this question, here is a list of methods that we have
considered and coupled until now:

Numerical methods
finite element method
boundary element method (experimental, undocumented)
volume integral methods (experimental, undocumented)

Chapter 1: Overview 7

Geometrical models
one-dimensional models (1D)
two-dimensional models (2D), plane and axisymmetric
three-dimensional models (3D)

Time states
static states
sinusoidal and harmonic states
transient states
eigenvalue problems

These methods have been successfully applied to build coupled physical models involving
electromagnetic phenomena (magnetostatics, magnetodynamics, electrostatics, electroki-
netics, electrodynamics, wave propagation, lumped electric circuits), acoustic phenomena,
thermal phenomena and mechanical phenomena (elasticity, rigid body movement).

As can be guessed from the preceding list, GetDP has been initially developed in the field
of computational electromagnetics, which fully uses all the offered coupling features. We
believe that this does not interfere with the expected generality of the software because a
particular modeling forms a problem definition structure which is totally external to the
software: GetDP offers computational tools; the user freely applies them to define and solve
his problem.

Nevertheless, specific numerical tools will always need to be implemented to solve specific
problems in areas other than those mentionned above. If you think the general phisosophy
of GetDP is right for you and your problem, but you discover that GetDP lacks the tools
necessary to handle it, let us know: we would love to discuss it with you. For example,
at the time of this writing, many areas of GetDP would need to be improved to make
GetDP as useful for computational mechanics or computational fluid dynamics as it is for
computational electromagnetics... So if you have the skills and some free time, feel free to
join the project: we gladly accept all code contributions!

1.3 Bug reports

Please file issues on https://gitlab.onelab.info/getdp/getdp/issues. Provide as pre-
cise a description of the problem as you can, including sample input files that produce the
bug. Don’t forget to mention both the version of GetDP and the version of your operation
system (see Chapter 3 [Running GetDP], page 11 to see how to get this information).

See Appendix D [Frequently asked questions], page 121, and the bug tracking system to see
which problems we already know about.

https://gitlab.onelab.info/getdp/getdp/issues
https://gitlab.onelab.info/getdp/getdp/issues

Chapter 2: How to read this manual 9

2 How to read this manual

After reading Chapter 1 [Overview|, page 5, which depicts the general philosophy of GetDP,
you might want to skip Chapter 4 [Expressions|, page 15, Chapter 5 [Objects], page 29 and
Chapter 6 [Types for objects], page 43 and directly run the demo files bundled in the
distribution on your computer (see Chapter 3 [Running GetDP], page 11). You should then
open these examples with a text editor and compare their structure with the examples given
in Chapter 7 [Short examples], page 75 and Chapter 8 [Complete examples|, page 91. For
each new syntax element that you fall onto, you can then go back to Chapter 4 [Expressions],
page 15, Chapter 5 [Objects], page 29, and Chapter 6 [Types for objects|, page 43, and find
in these chapters the detailed description of the syntactic rules as well as all the available
options.

Indexes for many concepts (see [Concept index], page 141) and for all the syntax elements
(see [Syntax index|, page 147) are available at the end of this manual.

2.1 Syntactic rules used in this document

Here are the rules we tried to follow when writing this user’s guide. Note that metasyntactic
variable definitions stay valid throughout all the manual (and not only in the sections where
the definitions appear). See [Metasyntactic variable index], page 145, for an index of all
metasyntactic variables.

1. Keywords and literal symbols are printed like this.

2. Metasyntactic variables (i.e., text bits that are not part of the syntax, but stand for
other text bits) are printed like this.

A colon (:) after a metasyntactic variable separates the variable from its definition.
Optional rules are enclosed in < > pairs.

Multiple choices are separated by |.

Three dots (. ..) indicate a possible repetition of the preceding rule.

For conciseness, the notation rule <, rule > ... is replaced by rule <,...>.

e B A

The etc symbol replaces nonlisted rules.

Chapter 3: Running GetDP 11

3 Running GetDP

GetDP has no graphical interface’. It is a command-line driven program that reads a
problem definition file once at the beginning of the processing. This problem definition file
is a regular ASCII text file (see Section 1.1 [Numerical tools as objects|, page 5), hence
created with whatever text editor you like.

If you just type the program name at your shell prompt (without any argument), you will
get a short help on how to run GetDP. All GetDP calls look like

getdp filename options

where filename is the ASCII file containing the problem definition, i.e., the structures this
user’s guide has taught you to create. This file can include other files (see Section 4.2
[Includes|, page 15), so that only one problem definition file should always be given on
the command line. The input files containing the problem definition structure are usually
given the ‘.pro’ extension (if so, there is no need to specify the extension on the command
line). The name of this file (without the extension) is used as a basis for the creation of
intermediate files during the pre-processing and the processing stages.

The options are a combination of the following commands (in any order):

-pre resolution-id

Performs the pre-processing associated with the resolution resolution-id. In the
pre-processing stage, GetDP creates the geometric database (from the mesh
file), identifies the degrees of freedom (the unknowns) of the problem and sets
up the constraints on these degrees of freedom. The pre-processing creates a file
with a ‘.pre’ extension. If resolution-id is omitted, the list of available choices
is displayed.

-cal

Performs the processing. This requires that a pre-processing has been per-
formed previously, or that a -pre option is given on the same command line.
The performed resolution is the one given as an argument to the -pre op-
tion. In the processing stage, GetDP executes all the commands given in the
Operation field of the selected Resolution object (such as matrix assemblies,
system resolutions, . . .).

-pos post-operation-id . . .

Performs the operations in the PostOperation(s) selected by the post-
operation-id(s). This requires that a processing has been performed previously,
or that a —cal option is given on the same command line. If post-operation-id
is omitted, the list of available choices is displayed.

-msh filename

If you are looking for a graphical front-end to GetDP, you may consider using Gmsh (available at
http://gmsh.info). Gmsh permits to construct geometries, generate meshes, launch computations and
visualize results directly from within a user-friendly graphical interface. The file formats used by Gmsh
for mesh generation and post-processing are the default file formats accepted by GetDP (see Section A.l
[Input file format], page 111, and Section 6.10 [Types for PostOperation], page 68).

http://gmsh.info

12 GetDP 3.6.0 (development version)

Reads the mesh (in .msh format) from filename (see Appendix A [File formats],
page 111) rather than from the default problem file name (with the ‘.msh’
extension appended).

-msh_scaling

value

Multiplies the coordinates of all the nodes in the mesh by value.
-gmshread

filename . . .

Read gmsh data files (same as GmshRead in Resolution operations). Allows
to use such datasets outside resolutions (e.g. in pre-processing).

-split
Saves processing results in separate files (one for each timestep).

-res filename . . .
Loads processing results from file(s).

-name string
Uses string as the default generic file name for input or output of mesh, pre-
processing and processing files.

-restart
Restarts processing of a time stepping resolution interrupted before being com-
plete.

-solve resolution-id

Same as -pre resolution-id -cal.

-solver filename

Specifies a solver option file (whose format varies depending on the linear alge-
bra toolkit used).

-slepc

Uses SLEPc instead of Arpack as eigensolver.
-adapt file

Reads adaptation constraints from file.
-order real

Specifies the maximum interpolation order.
—-cache

Caches network computations to disk.
-sparsity

Computes the exact sparsity pattern of matrices before each system assembly.

-sparsity-once
Computes the exact sparsity pattern of matrices once per system (before the
first assembly).

Chapter 3:

Running GetDP 13

-bin
Selects binary format for output files.
-v2
Creates mesh-based Gmsh output files when possible.
—check
Lets you check the problem structure interactively.
-V
-verbose integer
Sets the verbosity level. A value of 0 means that no information will be displayed
during the processing.
-cpu
Reports CPU times for all operations.
Y
-progress
integer
Sets the progress update rate. This controls the refreshment rate of the counter
indicating the progress of the current computation (in %).
-onelab name <address>
Communicates with OneLab (file or server address)
-setnumber
name value
Sets constant number name to value
-setstring
name value
Sets constant string name to value
-info
Displays the version information.
-version
Displays the version number.
—-help

Displays a message listing basic usage and available options.

Chapter 4: Expressions 15

4 Expressions

This chapter and the next two describe in a rather formal way all the commands that can
be used in the ASCII text input files. If you are just beginning to use GetDP, or just want
to see what GetDP is all about, you should skip this chapter and the next two for now, have
a quick look at Chapter 3 [Running GetDP], page 11, and run the demo problems bundled
in the distribution on your computer. You should then open the ‘.pro’ files in a text editor
and compare their structure with the examples given in Chapter 7 [Short examples|, page 75
and Chapter 8 [Complete examples|, page 91. Once you have a general idea of how the files
are organized, you might want to come back here to learn more about the specific syntax
of all the objects, and all the available options.

4.1 Comments

Both C and C++ style comments are supported and can be used in the input data files to
comment selected text regions:

1. the text region comprised between /* and */ pairs is ignored;

2. the rest of a line after a double slash // is ignored.

Comments cannot be used inside double quotes or inside GetDP keywords.

4.2 Includes

An input data file can be included in another input data file by placing one of the following
commands (expression-char represents a file name) on a separate line, outside the GetDP
objects. Any text placed after an include command on the same line is ignored.

Include expression-char
#include expression-char

See Section 4.4 [Constants|, page 16, for the definition of the character expression expression-
char.

4.3 Expressions definition

Expressions are the basic tool of GetDP. They cover a wide range of functional expressions,
from constants to formal expressions containing functions (built-in or user-defined, depend-
ing on space and time, etc.), arguments, discrete quantities and their associated differential
operators, etc. Note that ‘white space’ (spaces, tabs, new line characters) is ignored inside
expressions (as well as inside all GetDP objects).

Expressions are denoted by the metasyntactic variable expression (remember the definition
of the syntactic rules in Section 2.1 [Syntactic rules], page 9):

expression:
(expression) |
integer |
real |
constant-id |
quantity |
argument |

16 GetDP 3.6.0 (development version)

current-value |

variable-set |

variable-get |

register-set |

register-get |

operator-unary expression |

expression operator-binary expression |

expression operator-ternary-left expression operator-ternary-right ex-
pression |

built-in-function-id [< expression-list >] < { expression-cst-list } > |

function-id [< expression-list >] |

< Real | Complex > [expression] |

Dt [expression] |

AtAnteriorTimeStep [expression, integer] |

Order [quantity 1 |

Trace [expression, group-id] |

expression ##integer

The following sections introduce the quantities that can appear in expressions, i.e.,
constant terminals (integer, real) and constant expression identifiers (constant-id,
expression-cst-list), discretized fields (quantity), arguments (argument), current values
(current-value), register values (register-set, register-get), operators (operator-unary,
operator-binary, operator-ternary-left, operator-ternary-right) and built-in or user-defined
functions (built-in-function-id, function-id). The last seven cases in this definition permit
to cast an expression as real or complex, get the time derivative or evaluate an expression
at an anterior time step, retrieve the interpolation order of a discretized quantity, evaluate
the trace of an expression, and print the value of an expression for debugging purposes.

List of expressions are defined as:

expression-list:
expression <,...>

4.4 Constants

The three constant types used in GetDP are integer, real and string. These types have
the same meaning and syntax as in the C or C++ programming languages. Besides general
expressions (expression), purely constant expressions, denoted by the metasyntactic variable
expression-cst, are also used:

expression—-cst:

(expression-cst) |

integer |

real |

constant-id |

operator-unary expression-cst |

expression-cst operator-binary expression-cst |

expression-cst operator-ternary-left expression-cst operator-ternary-
right

expression-cst |

Chapter 4: Expressions 17

math-function-id [< expression-cst-list >] |

#constant-id () |

constant-id (expression-cst) |

StrFind[expression-char, expression-char] |

StrCmp[expression-char, expression-char] |

StrLen[expression-char] |

StringToName[expression-char] | S2N[expression-char] |
Exists[string] | FileExists[string] | GroupExists[string] |
GetForced[string] | NbrRegions [string] |

GetNumber [expression-char <, expression-cst>]

StrFind searches the first expression-char for any occurrence of the second expression-char.
StrCmp compares the two strings (returns an integer greater than, equal to, or less than
0, according as the first string is greater than, equal to, or less than the second string).
StrLen returns the length of the string. StringToName creates a name from the provided
string. Exists checks for the existence of a constant or a function. FileExists checks for
the existence of a file. GroupExists checks for the existence of a group. GetForced gets the
value of a constant (zero if does not exist). NbrRegions counts the numbers of elementary
regions in a group. GetNumber allows to get the value of a ONELAB number variable (the
optional second argument specifies the default value returned if the variable does not exist).

List of constant expressions are defined as:

expression-cst-list:

expression-cst-list-item <,...>
with

expression-cst-list-item:
expression-cst |
expression-cst : expression-cst |
expression-cst : expression-cst : expression-cst |
constant-id () |
constant-id ({ expression-cst-list }) |
List[constant-id] |
List[expression-cst-list-item] |
List[{ expression-cst-list }] |
ListAlt[constant-id, constant-id] |
ListAlt[expression-cst-list-item, expression-cst-list-item] |
LinSpace[expression-cst, expression-cst, expression-cst] |
LogSpace[expression-cst, expression-cst, expression-cst] |
- expression-cst-list-item |
expression-cst * expression-cst-list-item |
expression-cst-list-item * expression-cst |
expression-cst / expression-cst-list-item |
expression-cst-list-item / expression-cst |
expression-cst-list-item expression-cst |
expression-cst-list-item + expression-cst-list-item
expression-cst-list-item - expression-cst-list-item
expression-cst-list-item * expression-cst-list-item
expression-cst-list-item / expression-cst-list-item

18 GetDP 3.6.0 (development version)

ListFromFile [expression-char] |
ListFromServer [expression-char] |
ReadTable [expression-char, expression-char]

The second case in this last definition permits to create a list containing the range of
numbers comprised between the two expression-cst, with a unit incrementation step. The
third case also permits to create a list containing the range of numbers comprised between
the two expression-cst, but with a positive or negative incrementation step equal to the third
expression-cst. The fourth and fifth cases permit to reference constant identifiers (constant-
ids) of lists of constants and constant identifiers of sublists of constants (see below for the
definition of constant identifiers) . The sixth case is a synonym for the fourth. The seventh
case permits to create alternate lists: the arguments of ListAlt must be constant-ids of
lists of constants of the same dimension. The result is an alternate list of these constants:
first constant of argument 1, first constant of argument 2, second constant of argument 1,
etc. These kinds of lists of constants are for example often used for function parameters (see
Section 4.6 [Functions|, page 22). The next two cases permit to create linear and logarithmic
lists of numbers, respectively. The remaining cases permit to apply arithmetic operators
item-wise in lists. ListFromFile reads a list of numbers from a file. ListFromServer
attemps to get a list of numbers from the ONELAB variable expression-char. ReadTable
reads tabular data in the same format as ListFromFile, and in addition stores in the
run-time table named after the second expression-char.

Contrary to a general expression which is evaluated at runtime (thanks to an internal stack
mechanism), an expression-cst is completely evaluated during the syntactic analysis of the
problem (when GetDP reads the ‘.pro’ file). The definition of such constants or lists of
constants with identifiers can be made outside or inside any GetDP object. The syntax for
the definition of constants is:

affectation:

DefineConstant constant-id < = expression-cst > <,...> 1; |

[
DefineConstant [constant-id = { expression-cst , onelab-options } <,...>];
[

DefineConstant string-id < = string-def > <,...>1; |

DefineConstant [string-id = { string-def , onelab-options } <,...>];

constant-id <()> = constant-def; |
constant-id = DefineNumber[constant-def, onelab-options];
string-id <()> = string-def; |
string-id = DefineString[string-def, onelab-options 1; |
Printf ["string"] < > | >> string-def >; |
Printf ["string", expression-cst-list] < > | >> string-def >; |
Read [constant-id] ; |
Read [constant-id , expression-cst]; |
UndefineConstant | Delete [constant-id] ;
UndefineFunction [constant-id] ;
SetNumber [string , expression-cst];
SetString[string , string-def];
with
constant-id:
string |
string (expression-cst-list) |

Chapter 4: Expressions 19

string ~ { expression-cst } <,...>

constant-def:
expression-cst-list-item |
{ expression-cst-list }

string-id:
string |
string ~ { expression-cst } <,...>

string-def:
"string" |
StrCat[expression-char <,...>] |
Str[expression-char <,...>]

Notes:

1. Five constants are predefined in GetDP: Pi (3.1415926535897932), oD (0), 1D (1), 2D
(2) and 3D (3).

2. When ~“{expression-cst} is appended to a string string, the result is a new string
formed by the concatenation of string, _ (an underscore) and the value of the expression-
cst. This is most useful in loops (see Section 4.11 [Macros loops and conditionals],
page 27), where it permits to define unique strings automatically. For example,

For i In {1:3}
x"{i} = 1i;
EndFor
is the same as
x_1=1;
X_2 = 2;
x_3 = 3;

3. The assignment in DefineConstant (zero if no expression-cst is given) is performed
only if constant-id has not yet been defined. This kind of explicit default definition
mechanism is most useful in general problem definition structures making use of a
large number of generic constants, functions or groups. When exploiting only a part
of a complex problem definition structure, the default definition mechanism allows to
define the quantities of interest only, the others being assigned a default value (that
will not be used during the processing but that avoids the error messages produced
when references to undefined quantities are made).

When onelab-options are provided, the parameter is exchanged with the ONELAB
server. See https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetD
for more information.

4. DefineNumber and DefineString allow to define a ONELAB parameter. In this case
the affectation always takes place. SetNumber and SetString allow the direct setting
of ONELAB parameters without defining local variables.

See Section 7.1 [Constant expression examples], page 75, as well as Section 7.3 [Function
examples|, page 75, for some examples.

Character expressions are defined as follows:

https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP

20 GetDP 3.6.0 (development version)

expression—char:
"string" |
string-id |
StrCat[expression-char <,...>] |
Str[expression-char <,...>]
StrChoicel expression, expression-char, expression-char] |
StrSub[expression-char, expression, expression] |
StrSub[expression-char, expression] |
UpperCase [expression-char] |
Sprintf [expression-char] |
Sprintf[expression-char, expression-cst-list] |
NameToString (string) | N2S (string) |
GetString[expression-char <, expression-char,>] |
Date | CurrentDirectory | CurrentDir |
AbsolutePath [expression-char] |
DirName [expression-char] |
OnelabAction

StrCat and Str permit to concatenate character expressions (Str adds a newline character
after each string except the last) when creating a string. Str is also used to create string lists
(when string-id is followed by ()). StrChoice returns the first or second expression-char
depending on the value of expression. StrSub returns the portion of the string that starts at
the character position given by the first expression and spans the number of characters given
by the second expression or until the end of the string (whichever comes first; or always if
the second expression is not provided). UpperCase converts the expression-char to upper
case. Sprintf is equivalent to the sprintf C function (where expression-char is a format
string that can contain floating point formatting characters: %e, %g, etc.). NameToString
converts a variable name into a string. GetString allows to get the value of a ONELAB
string variable (the optional second argument specifies the default value returned if the
variable does not exist.) Date permits to access the current date. CurrentDirectory
and CurrentDir return the directory of the .pro file. AbsolutePath returns the absolute
path of a file. DirName returns the directory of a file. OnelabAction returns the current
ONELAB action (e.g. check or compute).

List of character expressions are defined as:

expression—char-1list:
expression-char <,...>

4.5 Operators

4.5.1 Operator types

The operators in GetDP are similar to the corresponding operators in the C or C++ pro-
gramming languages.

operator-unary:
- Unary minus.

! Logical not.

Chapter 4: Expressions 21

operator-binary:

/\

T

>>

<<

Exponentiation. The evaluation of the both arguments must result in a scalar
value.

Multiplication or scalar product, depending on the type of the arguments.
Cross product. The evaluation of both arguments must result in vectors.
Division.

Modulo. The evaluation of the second argument must result in a scalar value.
Addition.

Subtraction.

Equality.

Inequality.

Greater. The evaluation of both arguments must result in scalar values.

Greater or equality. The evaluation of both arguments must result in scalar
values.

Less. The evaluation of both arguments must result in scalar values.
Less or equality. The evaluation of both arguments must result in scalar values.
Logical ‘and’. The evaluation of both arguments must result in scalar values.

Logical ‘or’. The evaluation of both arguments must result in floating point
values. Warning: the logical ‘or’ always (unlike in C or C++) implies the eval-
uation of both arguments. That is, the second operand of || is evaluated even
if the first one is true.

Binary ‘and’.

Binary ‘or’.

Bitwise right-shift operator. Shifts the bits of the first argument to the right
by the number of bits specified by the second argument.

Bitwise left-shift operator. Shifts the bits of the first argument to the left by
the number of bits specified by the second argument.

operator-ternary-left:

?

operator-ternary-right:

The only ternary operator, formed by operator-ternary-left and operator-
ternary-right is defined as in the C or C++ programming languages. The
ternary operator first evaluates its first argument (the expression-cst located
before the ?), which must result in a scalar value. If it is true (non-zero)
the second argument (located between ? and :) is evaluated and returned;
otherwise the third argument (located after :) is evaluated and returned.

22 GetDP 3.6.0 (development version)

4.5.2 Evaluation order

The evaluation priorities are summarized below (from stronger to weaker, i.e., ~ has the
highest evaluation priority). Parentheses () may be used anywhere to change the order of
evaluation.

- (unary), !
| &

/\
*, /s h

4.6 Functions

Two types of functions coexist in GetDP: user-defined functions (function-id, see Section 5.2
[Function], page 30) and built-in functions (built-in-function-id, defined in this section).

Both types of functions are always followed by a pair of brackets [] that can possibly contain
arguments (see Section 4.8 [Arguments|, page 24). This makes it simple to distinguish a
function-id or a built-in-function-id from a constant-id. As shown below, built-in functions
might also have parameters, given between braces {}, and which are completely evaluated
during the analysis of the syntax (since they are of expression-cst-list type):

built-in-function-id [< expression-list >] < { expression-cst-list } >
with

built-in-function-id:
math-function-id |
extended-math-function-id |
green-function-id |
type-function-id |
coord-function-id |
misc-function-id

Notes:

1. All possible values for built-in-function-id are listed in Section 6.2 [Types for Function],
page 44.

2. Classical mathematical functions (see Section 6.2.1 [Math functions|, page 44) are the
only functions allowed in a constant definition (see the definition of expression-cst in
Section 4.4 [Constants], page 16).

Chapter 4: Expressions 23

4.7 Current values

Current values return the current floating point value of an internal GetDP variable:

$Time Value of the current time. This value is set to zero for non time dependent
analyses.
$DTime Value of the current time increment used in a time stepping algorithm.

$Theta Current theta value in a theta time stepping algorithm.

$TimeStep
Number of the current time step in a time stepping algorithm.

$Breakpoint
In case of a breakpoint hit in TimeLoopAdaptive it is the number of the current
breakpoint. In the other case when $Time corresponds not to a breakpoint the
value is -1.

$Iteration, $NLIteration
Current iteration in a nonlinear loop.

$Residual, $NLResidual
Current residual in a nonlinear loop.

$EigenvalueReal
Real part of the current eigenvalue.

$EigenvalueImag
Imaginary part of the current eigenvalue.

$X, $XS Value of the current (destination or source) X-coordinate.
$Y, $YS Value of the current (destination or source) Y-coordinate.
$Z, $ZS Value of the current (destination or source) Z-coordinate.

$A, $B, $C
Value of the current parametric coordinates used in the parametric OnGrid
PostOperation (see Section 6.10 [Types for PostOperation], page 68).

$QuadraturePointIndex
Index of the current quadrature point.

$KSPIteration
Current iteration in a Krylov subspace solver.

$KSPResidual
Current residual in a Krylov subspace solver.

$KSPIterations
Total number of iterations of Krylov subspace solver.

$KSPSystemSize
System size of Krylov subspace solver.

Note:

24 GetDP 3.6.0 (development version)

1. The current X, Y and Z coordinates refer to the ‘physical world’ coordinates, i.e.,
coordinates in which the mesh is expressed.

Current values are “read-only”. User-defined run-time variables, which share the same
syntax but whose value can be changed in an expression, are defined in Section 4.9 [Run-
time variables and registers|, page 24.

4.8 Arguments

Function arguments can be used in expressions and have the following syntax (integer
indicates the position of the argument in the expression-list of the function, starting from
1):
argument :
$integer
See Section 5.2 [Function], page 30, and Section 7.3 [Function examples|, page 75, for more
details.

4.9 Run-time variables and registers

Constant expressions (expression-csts) are evaluated only once during the analysis of the
problem definition structure, cf. Section 4.4 [Constants], page 16. While this is perfectly
fine in most situations, sometimes it is necessary to store and modify variables at run-time.
For example, an iteration in a Resolution could depend on values computed at run-time.
Also, to speed-up the evaluation of expressions (which are evaluated at runtime through
GetDP’s internal stack mechanism), it can be useful to save some results in a temporary
variable, at run-time, in order to reuse them later on.

Two mechanisms exit to handle such cases: run-time variables (which follow the same
syntax as Section 4.7 [Current values|, page 23), and registers.

Run-time variables have the following syntax:

variable-set:
$variable-id = expression

variable-get:
$variable-id

variable-id:
string |
string ~ { expression-cst } <,...>
Thus, run-time variables can simply be defined anywhere in an expression and be reused
later on. Current values can be seen as special cases of run-time variables, which are read-
only.

Registers have the following syntax:

register-set:
expression#expression-cst

register-get:

Chapter 4: Expressions 25

#expression—-cst
Thus, to store any expression in the register 5, one should add #5 directly after the expres-
sion. To reuse the value stored in this register, one simply uses #5 instead of the expression
it should replace.

See Section 7.3 [Function examples], page 75, for an example.

4.10 Fields

A discretized quantity (defined in a function space, cf. Section 5.4 [FunctionSpace],
page 32) is represented between braces {}, and can only appear in well-defined expressions
in Formulation (see Section 5.7 [Formulation|, page 36) and PostProcessing (see
Section 5.9 [PostProcessing], page 39) objects:
quantity:
< quantity-dof > { < quantity-operator > quantity-id 1} |
{ < quantity-operator > quantity-id } [expression-cst-list]

with
quantity-id:
string |
string ~ { expression-cst }
and

quantity-dof:

Dof Defines a vector of discrete quantities (vector of Degrees of freedom), to be
used only in Equation terms of formulations to define (elementary) matrices.
Roughly said, the Dof symbol in front of a discrete quantity indicates that this
quantity is an unknown quantity, and should therefore not be considered as
already computed.

An Equation term must be linear with respect to the Dof. Thus, for example,
a nonlinear term like

Integral { [£[] * Dof{T}"4 , {T} 1; ... }
must first be linearized; and while
Integral { [£[] * Dof{T} , {T} 1; ... }
Integral { [-f[] = 12 , {T} 1; ... }
is valid, the following, which is affine but not linear, is not:
Integral { [f[] * (Dof{T} - 12) , {T}+ 1; ... %}

GetDP supports two linearization techniques. The first is functional iteration
(or Picard method), where one simply plugs the value obtained at the previ-
ous iteration into the nonlinear equation (the previous value is known, and is
accessed e.g. with {T} instead Dof{T}). The second is the Newton-Raphson
iteration, where the Jacobian is specified with a JacNL equation term.

BF Indicates that only a basis function will be used (only valid with basis functions
associated with regions).

quantity-operator:

d Exterior derivative (d): applied to a p-form, gives a (p+1)-form.

26

Grad

Curl
Rot

Div

D1

D2

Notes:

GetDP 3.6.0 (development version)

Gradient: applied to a scalar field, gives a vector.

Curl: applied to a vector field, gives a vector.
Divergence (div): applied to a vector field, gives a scalar.

Applies the operator specified in the first argument of dFunction { basis-
function-type, basis-function-type } (see Section 5.4 [FunctionSpace],
page 32). This is currently only used for nodal-interpolated vector fields
(interpolated with BF_Node_X, BF_Node_Y, BF_Node_Z)

When the first basis-function-type in dFunction is set to BF_NodeX_D1 for
component X, BF_NodeY_D1 for component Y and BF_NodeZ_D1 for component
Z, then D1 applied to a vector [u_x, u_y, u_z| gives:

[auz % 8uz]
ox ' Oy’ 0z

Note that in this case specifying explicitely dFunction is not necessary, as
BF_NodeX_D1, BF_NodeY_D1 and BF_NodeZ_D1 are assigned by default as the
“D1 derivatives” of BF_NodeX, BF_NodeY and BF_NodeZ. This also holds for
BF_GroupOfNodes_X, BF_GroupOfNodes_Y and BF_GroupOfNodes_Z.

When the first basis-function-type in dFunction is set to BF_NodeX_D12 for

component X and BF_NodeY_D12 for component Y, then D1 applied to a vector
[u_x, u_y] gives:

. ou, D, ou,
ox ' Oy’ Ox oy

Applies the operator specified in the second argument of dFunction { basis-
function-type, basis-function-type } (see Section 5.4 [FunctionSpace],
page 32). This is currently only used for nodal-interpolated vector fields
(interpolated with BF_Node_X, BF_Node_Y, BF_Node_Z)

More specifically, when the second basis-function-type is to BF_NodeX_D2 for
component X, BF_NodeY_D2 for component Y and BF_NodeZ_D2 for component
Z, then D2 applied to a vector [u_x, u_y, u_z| gives:

% n Ou, Ou, % Ou,, . ou,
Ox Oy Oy 0z 0z Ox

Note that in this case specifying explicitely dFunction is not necessary, as
BF_NodeX_D2, BF_NodeY_D2 and BF_NodeZ_D2 are assigned by default as the
“D2 derivatives” of BF_NodeX, BF_NodeY and BF_NodeZ. This also holds for
BF_GroupOfNodes_X, BF_GroupOfNodes_Y and BF_GroupOfNodes_Z.

1. While the operators Grad, Curl and Div can be applied to 0, 1 and 2-forms respectively,
the exterior derivative operator d is usually preferred with such fields.

2. The second case permits to evaluate a discretized quantity at a certain position X, Y,
Z (when expression-cst-list contains three items) or at a specific time, N time steps ago
(when expression-cst-list contains a single item).

Chapter 4: Expressions 27

4.11 Macros, loops and conditionals
Macros are defined as follows:

Macro string | expression-char
Begins the declaration of a user-defined file macro named string. The body of
the macro starts on the line after ‘Macro string’, and can contain any GetDP
command.

Return FEnds the body of the current user-defined file macro. Macro declarations cannot
be imbricated, and must be made outside any GetDP object.

Macro (expression-char , expression-char) ;
Begins the declaration of a user-defined string macro. The body of the macro
is given explicitly as the second argument.

Macros, loops and conditionals can be used in any of the following objects: Group, Function,
Constraint (as well as in a contraint-case), FunctionSpace, Formulation (as well as in the
quantity and equation defintions), Resolution (as well as resolution-term, system defintion
and operations), PostProcessing (in the definition of the PostQuantities) and PostOperation
(as well as in the operation list).

loop:

Call string | expression-char;
Executes the body of a (previously defined) macro named string.

For (expression-cst : expression-cst)
Iterates from the value of the first expression-cst to the value of the second
expression-cst, with a unit incrementation step. At each iteration, the com-
mands comprised between ‘For (expression-cst : expression-cst)’ and
the matching EndFor are executed.

For (expression-cst : expression-cst : expression-cst)
Iterates from the value of the first expression-cst to the value of the second
expression-cst, with a positive or negative incrementation step equal to the third
expression-cst. At each iteration, the commands comprised between ‘For (
expression-cst : expression-cst : expression-cst)’ and the matching
EndFor are executed.

For string In { expression-cst : expression-cst }
Iterates from the value of the first expression-cst to the value of the second
expression-cst, with a unit incrementation step. At each iteration, the value of
the iterate is affected to an expression named string, and the commands com-
prised between ‘For string In { expression-cst : expression-cst } and
the matching EndFor are executed.

For string In { expression-cst : expression-cst : expression-cst }
Iterates from the value of the first expression-cst to the value of the second
expression-cst, with a positive or negative incrementation step equal to the third
expression-cst. At each iteration, the value of the iterate is affected to an ex-
pression named string, and the commands comprised between ‘For string In {
expression-cst : expression-cst : expression-cst }’ and the matching
EndFor are executed.

28 GetDP 3.6.0 (development version)

EndFor Ends a matching For command.

If (expression-cst)
The body enclosed between ‘If (expression-cst)’ and the matching
Elself, Else or EndIf, is evaluated if expression-cst is non-zero.

ElselIf (expression-cst)
The body enclosed between ‘Elself (expression-cst)’ and the next match-
ing ElseIf, Else or EndIf, is evaluated if expression-cst is non-zero and none of
the expression-cst of the previous matching codes If and ElseIf were non-zero.

Else The body enclosed between Else and the matching EndIf is evaluated if none of
the expression-cst of the previous matching codes If and ElseIf were non-zero.

EndIf Ends a matching If command.

LevelTest
Variable equal to the level of imbrication of a body in an If-EndIf test.

Parse [expression-char];
Parse the given string.

Chapter 5: Objects 29

5 Objects

This chapter presents the formal definition of the ten GetDP objects mentioned in Chapter 1
[Overview|, page 5. To be concise, all the possible parameters for these objects are not given
here (cf. the etc syntactic rule defined in Section 2.1 [Syntactic rules], page 9). Please refer
to Chapter 6 [Types for objects|, page 43, for the list of all available options.

5.1 Group: defining topological entities

Meshes (grids) constitute the input data of GetDP. All that is needed by GetDP as a
mesh is a file containing a list of nodes (with their coordinates) and a list of geometrical
elements with, for each one, a number characterizing its geometrical type (i.e., line, triangle,
quadrangle, tetrahedron, hexahedron, prism, etc.), a number characterizing the physical
region to which it belongs and the list of its nodes. This minimal input set should be easy
to extract from most of the classical mesh file formats (see Section A.1 [Input file format],
page 111, for a complete description of the mesh file format read by GetDP).

Groups of geometrical entities of various types can be considered and are used in many
objects. There are region groups, of which the entities are regions, and function groups,
with nodes, edges, facets, volumes, groups of nodes, edges of tree, facets of tree, ... of
regions.

Amongst region groups, elementary and global groups can be distinguished: elementary
groups are relative to single regions (e.g., physical regions in which piecewise defined func-
tions or constraints can be defined) while global groups are relative to sets of regions for
which given treatments have to be performed (e.g., domain of integration, support of a
function space, etc.).

Groups of function type contain lists of entities built on some region groups (e.g., nodes for
nodal elements, edges for edge elements, edges of tree for gauge conditions, groups of nodes
for floating potentials, elements on one side of a surface for cuts, etc.).

A definition of initially empty groups can be obtained thanks to a DefineGroup command,
so that their identifiers exist and can be referred to in other objects, even if these groups
are not explicitly defined. This procedure is similar to the DefineConstant procedure
introduced for constants in Section 4.4 [Constants], page 16.

The syntax for the definition of groups is:

Group {
< DefineGroup [group-id <{integer}> <,...> 1; > ...

< group-id = group-def; > ...
< group-id += group-def; > ...
< group-id -= group-def; > ...
< affectation > ...
< loop > ...

b

with

group-id:

string |

string ~ { expression-cst }

30 GetDP 3.6.0 (development version)

group-def :
group-type [group-list <, group-sub-type group-list >] |
group-id <{<integer>1}> |
#group-list

group-type:
Region | Global | NodesOf | EdgesOf | etc

group-list:
A1l | group-list-item | { group-list-item <,...> }

group-list-item:
integer |
integer : integer |
integer : integer : integer |
group-id <{<integer>}>

group-sub-type:
Not | StartingOn | OnPositiveSideOf | etc

Notes:

1. integer as a group-list-item is the only interface with the mesh; with each element is
associated a region number, being this integer, and a geometrical type (see Section A.1
[Input file format]|, page 111). Ranges of integers can be specified in the same way as
ranges of constant expressions in an expression-cst-list-item (see Section 4.4 [Constants|,
page 16). For example, i:j replaces the list of consecutive integers i, i+1, ..., j-1, j.

2. Array of groups: DefineGroup [group-id{n}] defines the empty groups group-id{i},
i=1, ..., n. Such a definition is optional, i.e., each group-id{i} can be separately
deﬁned, in any order.

3. #group-list is an abbreviation of Region[group-list].

See Section 6.1 [Types for Group|, page 43, for the complete list of options and Section 7.2
[Group examples|, page 75, for some examples.

5.2 Function: defining global and piecewise expressions

A user-defined function can be global in space or piecewise defined in region groups. A
physical characteristic is an example of a piecewise defined function (e.g., magnetic perme-
ability, electric conductivity, etc.) and can be simply a constant, for linear materials, or a
function of one or several arguments for nonlinear materials. Such functions can of course
depend on space coordinates or time, which can be needed to express complex constraints.

A definition of initially empty functions can be made thanks to the DefineFunction com-
mand so that their identifiers exist and can be referred to (but cannot be used) in other
objects. The syntax for the definition of functions is:

Function {
< DefineFunction [function-id <,...>]; > ...

Chapter 5: Objects 31

< function-id [< group-def <, group-def > >] = expression; > ...
< affectation > ...
< loop > ...
3
with
function-id:
string

Note:

1. The first optional group-def in brackets must be of Region type, and indicates on
which region the (piecewise) function is defined. The second optional group-def in
brackets, also of Region type, defines an association with a second region for mutual
contributions. A default piecewise function can be defined with A1l for group-def,
for all the other non-defined regions. Warning: it is incorrect to write f[regl]l=1;
glreg2]=£f[]1+1; since the domains of definition of £[] and g[] don’t match.

2. One can also define initially empty functions inline by replacing the expression with
*kok,

See Section 6.2 [Types for Function], page 44, for the complete list of built-in functions and
Section 7.3 [Function examples|, page 75, for some examples.

5.3 Constraint: specifying constraints on function spaces
and formulations

Constraints can be referred to in FunctionSpace objects to be used for boundary conditions,
to impose global quantities or to initialize quantities. These constraints can be expressed
with functions or be imposed by the pre-resolution of another discrete problem. Other
constraints can also be defined, e.g., constraints of network type for the definition of circuit
connections, to be used in Formulation objects.

The syntax for the definition of constraints is:

Constraint {
{ < Append < expression-cst >; >
Name constraint-id; Type constraint-type;
Case {
{ Region group-def; < Type constraint-type; >
< SubRegion group-def; > < TimeFunction expression; >
< RegionRef group-def; > < SubRegionRef group-def; >
< Coefficient expression; > < Function expression; >
< Filter expression; >
constraint-val; } ...
< loop > ...
3
| Case constraint-case-id {
{ Region group-def; < Type constraint-type; >
constraint-case-val; } ...
< loop > ...

Yoo

32 GetDP 3.6.0 (development version)

Fo.o..
< affectation > ...
< loop > ...
}
with
constraint-id:
constraint-case-id:
string |
string ~ { expression-cst }

constraint-type:
Assign | Init | Network | Link | etc

constraint-val:
Value expression | NameOfResolution resolution-id | etc

constraint-case-val:
Branch { integer, integer } | etc

Notes:

1. The optional Append < expression-cst > (when the optional level expression-cst is
strictly positive) permits to append an existing Constraint of the same Name with
additional Cases.

2. The constraint type constraint-type defined outside the Case fields is applied to all
the cases of the constraint, unless other types are explicitly given in these cases. The
default type is Assign.

3. The region type Region group-def will be the main group-list argument of the group-
def to be built for the constraints of FunctionSpaces. The optional region type
SubRegion group-def will be the argument of the associated group-sub-type.

4. expression in Value of constraint-val cannot be time dependent ($Time) because it is
evaluated only once during the pre-processing (for efficiency reasons). Time depen-
dences must be defined in TimeFunction expression.

See Section 6.3 [Types for Constraint|, page 54, for the complete list of options and
Section 7.4 [Constraint examples|, page 77, for some examples.

5.4 FunctionSpace: building function spaces

A FunctionSpace is characterized by the type of its interpolated fields, one or several basis
functions and optional constraints (in space and time). Subspaces of a function space can
be defined (e.g., for the use with hierarchical elements), as well as direct associations of
global quantities (e.g., floating potential, electric charge, current, voltage, magnetomotive
force, etc.).

A key point is that basis functions are defined by any number of subsets of functions,
being added. Each subset is characterized by associated built-in functions for evaluation,
a support of definition and a set of associated supporting geometrical entities (e.g., nodes,
edges, facets, volumes, groups of nodes, edges incident to a node, etc.). The freedom in

Chapter 5: Objects 33

defining various kinds of basis functions associated with different geometrical entities to
interpolate a field permits to build made-to-measure function spaces adapted to a wide
variety of field approximations (see Section 7.5 [FunctionSpace examples|, page 78).

The syntax for the definition of function spaces is:

FunctionSpace {
{ < Append < expression-cst >; >

Name function-space-id;

Type function-space-type;

BasisFunction {

{ Name basis-function-id; NameOfCoef coef-id;
Function basis-function-type
< { Quantity quantity-id;

Formulation formulation-id { expression-cst };

Group group-def;

Resolution resolution-id { expression-cst } } >;
< dFunction { basis-function-type, basis-function-type
Support group-def; Entity group-def; } ...

b
< SubSpace {
{ < Append < expression-cst >; >
Name sub-space-id;
NameOfBasisFunction basis-function-list; }
T >
< GlobalQuantity {
{ Name global-quantity-id; Type global-quantity-type;
NameOfCoef coef-id; } ...
} >
< Constraint {
{ NameOfCoef coef-id;

EntityType Auto | group-type; < EntitySubType group-sub-type; >

NameOfConstraint constraint-id <{}>; }

3 >

A

affectation >
< loop >

with
function-space-id:
formulation-id:
resolution-id:
string |
string ~ { expression-cst }

basis-function-id:
coef-id:
sub-space-id:

34 GetDP 3.6.0 (development version)
global—-quantity-id:
string
function-space-type:
Scalar | Vector | FormO | Forml | etc
basis-function-type:
BF_Node | BF_Edge | etc
basis-function-list:
basis-function-id | { basis-function-id <,...> }
global-quantity-type:
AliasOf | AssociatedWith
Notes:
1. The optional Append < expression-cst > (when the optional level expression-cst is

strictly positive; its omission fixes it to a top value) permits to append an exist-
ing FunctionSpace of the same Name with additional BasisFunctions, SubSpaces,
GlobalQuantity’s and Constraints, or an existing SubSpace of the same Name with ad-
ditional NameOfBasisFunction’s. If the Append FunctionSpace level is 2, the Append
SubSpace level is automatically 1 if omitted.

When the definition region of a function type group used as an Entity of a
BasisFunction is the same as that of the associated Support, it is replaced by
A1l for more efficient treatments during the computation process (this prevents the
construction and the analysis of a list of geometrical entities).

The same Name for several BasisFunction fields permits to define piecewise basis func-
tions; separate NameOfCoefs must be defined for those fields.

A constraint is associated with geometrical entities defined by an automatically created
Group of type group-type (Auto automatically fixes it as the Entity group-def type of
the related BasisFunction), using the Region defined in a Constraint object as its
main argument, and the optional SubRegion in the same object as a group-sub-type
argument.

A global basis function (BF_Global or BF_dGlobal) needs parameters, i.e., it is given
by the quantity (quantity-id) pre-computed from multiresolutions performed on mul-
tiformulations.

Explicit derivatives of the basis functions can be specified using dFunction { basis-
function-type , basis-function-type }. These derivates can be accessed using the
special D1 and D2 operators (see Section 4.10 [Fields|, page 25).

See Section 6.4 [Types for FunctionSpace|, page 55, for the complete list of options and
Section 7.5 [FunctionSpace examples], page 78, for some examples.

5.5 Jacobian: defining jacobian methods

Jacobian methods can be referred to in Formulation and PostProcessing objects to be
used in the computation of integral terms and for changes of coordinates. They are based on

Chapter 5: Objects 35

Group objects and define the geometrical transformations applied to the reference elements
(i.e., lines, triangles, quadrangles, tetrahedra, prisms, hexahedra, etc.). Besides the classical
lineic, surfacic and volume Jacobians, the Jacobian object allows the construction of various
transformation methods (e.g., infinite transformations for unbounded domains) thanks to
dedicated jacobian methods.

The syntax for the definition of Jacobian methods is:

Jacobian {
{ < Append < expression-cst >; >
Name jacobian-id;
Case {
{ Region group-def | All;
Jacobian jacobian-type < { expression-cst-list } >; } ...

with
jacobian-id:
string

jacobian-type:
Vol | Sur | VolAxi | etc
Note:

1. The optional Append < expression-cst > (when the optional level expression-cst is
strictly positive) permits to append an existing Jacobian of the same Name with addi-
tional Cases.

2. The default case of a Jacobian object is defined by Region A1l and must follow all
the other cases.

See Section 6.5 [Types for Jacobian], page 57, for the complete list of options and Section 7.6
[Jacobian examples|, page 82, for some examples.

5.6 Integration: defining integration methods

Various numerical or analytical integration methods can be referred to in Formulation and
PostProcessing objects to be used in the computation of integral terms, each with a set
of particular options (number of integration points for quadrature methods—which can be
linked to an error criterion for adaptative methods, definition of transformations for singular
integrations, etc.). Moreover, a choice can be made between several integration methods
according to a criterion (e.g., on the proximity between the source and computation points
in integral formulations).
The syntax for the definition of integration methods is:
Integration {
{ < Append < expression-cst >; >

Name integration-id; < Criterion expression; >

Case {

< { Type integration-type;

36 GetDP 3.6.0 (development version)

Case {
{ GeoElement element-type; NumberOfPoints expression-cst } ...
}
Yoo
< { Type Analytic; } ... >
b
)
¥
with
integration-id:
string

integration-type:
Gauss | etc

element-type:
Line | Triangle | Tetrahedron etc

Note:

1. The optional Append < expression-cst > (when the optional level expression-cst is
strictly positive) permits to append an existing Integration of the same Name with
additional Cases.

See Section 6.6 [Types for Integration], page 58, for the complete list of options and
Section 7.7 [Integration examples|, page 83, for some examples.

5.7 Formulation: building equations

The Formulation tool permits to deal with volume, surface and line integrals with many
kinds of densities to integrate, written in a form that is similar to their symbolic expressions
(it uses the same expression syntax as elsewhere in GetDP), which therefore permits to
directly take into account various kinds of elementary matrices (e.g., with scalar or cross
products, anisotropies, nonlinearities, time derivatives, various test functions, etc.). In
case nonlinear physical characteristics are considered, arguments are used for associated
functions. In that way, many formulations can be directly written in the data file, as they
are written symbolically. Fields involved in each formulation are declared as belonging to
beforehand defined function spaces. The uncoupling between formulations and function
spaces allows to maintain a generality in both their definitions.

A Formulation is characterized by its type, the involved quantities (of local, global or
integral type) and a list of equation terms. Global equations can also be considered, e.g.,
for the coupling with network relations.

The syntax for the definition of formulations is:

Formulation {
{ < Append < expression-cst >; >
Name formulation-id; Type formulation-type;
Quantity {
{ Name quantity-id; Type quantity-type;

Chapter 5: Objects

NameOfSpace function-space-id <{}>
< [sub-space-id | global-quantity-id 1 >;
< Symmetry expression-cst; >
< [expression]; In group-def;
Jacobian jacobian-id; Integration integration-id; >
< Index0fSystem integer; > 1} ...
b
Equation {
< local-term-type
{ < term-op-type > [expression, expression 1];
In group-def; Jacobian jacobian-id;
Integration integration-id; } > ...
< GlobalTerm
{ < term-op-type > [expression, expression];
In group-def; < SubType equation-term-sub-type; > } >
< GlobalEquation
{ Type Network; NameOfConstraint constraint-id;
{ Node expression; Loop expression; Equation expression;
In group-def; } ...
P> oo
< affectation > ...
< loop > ...
X
Yoo
< affectation >
< loop >

}
with

formulation-id:
string |
string ~ { expression-cst }

formulation-type:
FemEquation | etc

local-term-type:
Integral

equation-term—-sub-type:
Self (default) | Mutual | SelfAndMutual

quantity-type:
Local | Global | Integral

term-op-type:
DtDof | DtDtDof | Eig | JacNL | etc

38 GetDP 3.6.0 (development version)

Note:

1. The optional Append < expression-cst > (when the optional level expression-cst is
strictly positive) permits to append an existing Formulation of the same Name with
additional Quantity’s and Equations.

2. Index0fSystem permits to resolve ambiguous cases when several quantities belong to
the same function space, but to different systems of equations. The integer parameter
then specifies the index in the list of an OriginSystem command (see Section 5.8
[Resolution], page 38).

3. A GlobalTerm defines a term to be assembled in an equation associated with a global
quantity. This equation is a finite element equation if that global quantity is linked
with local quantities. The optional associated SubType defines either self (default) or
mutual contributions, or both. Mutual contributions need piecewise functions defined
on pairs or regions.

4. A GlobalEquation defines a global equation to be assembled in the matrix of the
system.

See Section 6.7 [Types for Formulation], page 58, for the complete list of options and
Section 7.8 [Formulation examples|, page 83, for some examples.

5.8 Resolution: solving systems of equations

The operations available in a Resolution include: the generation of a linear system, its
solving with various kinds of linear solvers, the saving of the solution or its transfer to
another system, the definition of various time stepping methods, the construction of itera-
tive loops for nonlinear problems (Newton-Raphson and fixed point methods), etc. Multi-
harmonic resolutions, coupled problems (e.g., magneto-thermal) or linked problems (e.g.,
pre-computations of source fields) are thus easily defined in GetDP.

The Resolution object is characterized by a list of systems to build and their associated
formulations, using time or frequency domain, and a list of elementary operations:

Resolution {
{ < Append < expression-cst >; >
Name resolution-id; < Hidden expression-cst; >
System {
{ Name system-id; NameOfFormulation formulation-list;
< Type system-type; >
< Frequency expression-cst-list-item |
Frequency { expression-cst-list }; >

< DestinationSystem system-id; >
< OriginSystem system-id; | OriginSystem { system-id <,...> }; >
< NameOfMesh expression-char > < Solver expression-char >
< loop > } ...
< loop > ...

b

Operation {
< resolution-op; > ...
< loop > ...

3

Chapter 5: Objects 39

with

}o.o..
< affectation > ...
< loop > ...

¥

resolution-id:
system-id:
string |
string ~ { expression-cst }

formulation-list:
formulation-id <{}> | { formulation-id <{}> <,...> }

system-type :
Real | Complex

resolution-op:
Generate[system-id] | Solvelsystem-id] | etc

Notes:

1.

See

The optional Append < expression-cst > (when the optional level expression-cst is
strictly positive) permits to append an existing Resolution of the same Name with
additional Systems and Operations.

The default type for a system of equations is Real. A frequency domain analysis is
defined through the definition of one or several frequencies (Frequency expression-
cst-list-item | Frequency { expression-cst-list }). Complex systems of equa-
tions with no predefined list of frequencies (e.g., in modal analyses) can be explicitely
defined with Type Complex.

NameOfMesh permits to explicitely specify the mesh to be used for the construction of
the system of equations.

Solver permits to explicitely specify the name of the solver parameter file to use for the
solving of the system of equations. This is ony valid if GetDP was compiled against the
default solver library (it is the case if you downloaded a pre-compiled copy of GetDP
from the internet).

DestinationSystem permits to specify the destination system of a TransferSolution
operation (see Section 6.8 [Types for Resolution], page 59).

OriginSystem permits to specify the systems from which ambiguous quantity defini-
tions can be solved (see Section 5.7 [Formulation], page 36).

Section 6.8 [Types for Resolution], page 59, for the complete list of options and

Section 7.9 [Resolution examples], page 85, for some examples.

5.9

The
mits

PostProcessing: exploiting computational results

PostProcessing object is based on the quantities defined in a Formulation and per-
the construction (thanks to the expression syntax) of any useful piecewise defined

quantity of interest:

40 GetDP 3.6.0 (development version)
PostProcessing {
{ < Append < expression-cst >; >
Name post-processing-id;
NameOfFormulation formulation-id <{}>; < NameOfSystem system-id; >
Quantity {
{ < Append < expression-cst >; >
Name post-quantity-id; Value { post-value ... } } ...
< loop > ...
}
oo
< affectation > ...
< loop > ...
}
with
post-processing-id:
post-quantity-id:
string |
string ~ { expression-cst }
post-value:
Local { local-value } | Integral { integral-value }
local-value:
[expression]; In group-def; Jacobian jacobian-id;
integral-value:
[expression]; In group-def;
Integration integration-id; Jacobian jacobian-id;
Notes:
1. The optional Append < expression-cst > (when the optional level expression-cst is

strictly positive; its omission fixes it to a top value) permits to append an existing
PostProcessing of the same Name with additional Values, or an existing Quantity of
the same Name with additional Quantity’s. If the Append PostProcessing level is 2,
the Append Quantity level is automatically 1 if omitted. Fixing the Append Quantity
level to -n suppresses the n lastly defined Quantity’s before appending.

The quantity defined with integral-value is piecewise defined over the elements of the
mesh of group-def, and takes, in each element, the value of the integration of expres-
sion over this element. The global integral of expression over a whole region (being
either group-def or a subset of group-def) has to be defined in the PostOperation
with the post-quantity-id [group-def] command (see Section 5.10 [PostOperation],
page 41).

If NameOfSystem system-id is not given, the system is automatically selected as the
one to which the first quantity listed in the Quantity field of formulation-id is associ-
ated.

Chapter 5: Objects 41

See Section 6.9 [Types for PostProcessing], page 68, for the complete list of options and
Section 7.10 [PostProcessing examples], page 88, for some examples.

5.10 PostOperation: exporting results

The PostOperation is the bridge between results obtained with GetDP and the external
world. It defines several elementary operations on PostProcessing quantities (e.g., plot
on a region, section on a user-defined plane, etc.), and outputs the results in several file
formats.

PostOperation {

{ < Append < expression-cst >; >

Name post-operation-id; NameOfPostProcessing post-processing-id;

Hidden expression-cst; >
Format post-operation-fmt; >
TimeValue expression-cst-list; > < TimeImagValue expression-cst-list; >
LastTimeStepOnly < expression-cst >; >
OverrideTimeStepValue expression-cst; >
NoMesh expression-cst; > < AppendToExistingFile expression-cst; >
ResampleTime [expression-cst, expression-cst, expression-cst]; >
AppendTimeStepToFileName < expression-cst >; >
Operation {

< post-operation-op; > ...

AN NN AN AN AN NN

}
b
< affectation >
< loop >
I
PostOperation < (Append < expression-cst >) > post-operation-id UsingPost post-
processing-id {
< post-operation-op; >
¥
with
post-operation-id:
string |
string ~ { expression-cst }

post-operation-op:

Print[post-quantity-id <[group-defl]>, print-support <,print-option> ...] |
Print[expression-list, Format "string" <,print-option> ...] |

PrintGroup[group-id, print-support <,print-option> ...] |

Echo["string" <,print-option> ...] |

CreateDir ["string"] |

DeleteFile ["string"] |
SendMergeFileRequest [expression-char] |
< loop >

etc

42 GetDP 3.6.0 (development version)
print-support:
OnElements0f group-def | OnRegion group-def | OnGlobal | etc
print-option:
File expression-char | Format post-operation-fmt | etc
post-operation-fmt :
Table | TimeTable | etc
Notes:
1. The optional Append < expression-cst > (when the optional level expression-cst is

strictly positive) permits to append an existing PostOperation of the same Name with
additional Operations.

Both PostOperation syntaxes are equivalent. The first one conforms to the overall
interface, but the second one is more concise.

The format post-operation-fmt defined outside the Operation field is applied to all the
post-processing operations, unless other formats are explicitly given in these operations
with the Format option (see Section 6.10 [Types for PostOperation|, page 68). The
default format is Gmsh.

The ResampleTime option allows equidistant resampling of the time steps by a spline
interpolation. The parameters are: start time, stop time, time step.

The optional argument [group-def] of the post-quantity-id can only be used when
this quantity has been defined as an integral-value (see Section 5.9 [PostProcessing],
page 39). In this case, the sum of all elementary integrals is performed over the region
group-def.

See Section 6.10 [Types for PostOperation], page 68, for the complete list of options and
Section 7.11 [PostOperation examples|, page 88, for some examples.

Chapter 6: Types for objects 43

6 Types for objects

This chapter presents the complete list of choices associated with metasyntactic variables
introduced for the ten GetDP objects.

6.1 Types for Group
Types in
group-type [R1 <, group-sub-type R2 <, group-sub-type-2 R3 > >]

group-type < group-sub-type < group-sub-type-2 > >:

Region Regions in RI.

Global Regions in R1 (variant of Region used with global BasisFunctions BF_Global
and BF_dGlobal).

Nodes0f Nodes of elements of R1
< Not: but not those of R2 >.

Edges0f Edges of elements of R1
< Not: but not those of R2 >.

FacetsOf Facets of elements of R1
< Not: but not those of R2 >.

VolumesOf
Volumes of elements of R1

< Not: but not those of R2 >.

ElementsOf
Elements of regions in R1
< OnOneSide0f: only elements on one side of R2 (non-automatic, i.e., both sides
if both in R1) > | < OnPositiveSideOf: only elements on positive (normal)
side of R2 <, Not: but not those touching only its skin R3 (mandatory for free
skins for correct separation of side layers) > >.

Groups0fNodesOf
Groups of nodes of elements of R1 (a group is associated with each region).

GroupsO0fEdgesOf
Groups of edges of elements of R1 (a group is associated with each region).

< InSupport: in a support R2 being a group of type Element0f, i.e., containing
elements >.

GroupsOfEdgesOnNodesOf
Groups of edges incident to nodes of elements of R1 (a group is associated with
each node).

< Not: but not those of R2) >.
GroupOfRegionsOf

Single group of elements of regions in R1 (with basis function BF_Region just
one DOF is created for all elements of R1).

44 GetDP 3.6.0 (development version)

Edges0fTreeln
Edges of a tree of edges of R1

< StartingOn: a complete tree is first built on R2 >.
FacetsOfTreeln

Facets of a tree of facets of R1

< Starting0On: a complete tree is first built on R2 >.

DualNodesOf
Dual nodes of elements of R1.

DualEdgesOf
Dual edges of elements of R1.

DualFacetsOf
Dual facets of elements of R1.

DualVolumesOf
Dual volumes of elements of R1.

6.2 Types for Function

6.2.1 Math functions

The following functions are the equivalent of the functions of the C or C++ math library.
Unless indicated otherwise, arguments to these functions can be real or complex valued
when used in expressions. When used in constant expressions (expression-cst, see Section 4.4
[Constants|, page 16), only real-valued arguments are accepted.

math-function-id:
Exp [expression]
Exponential function: e”expression.
Log [expression]
Natural logarithm: In(expression), expression>0.
Logl0 [expression]
Base 10 logarithm: logl0(expression), expression>0.
Sqrt [expression]
Square root, expression>=0.
Sin [expression]
Sine of expression.
Asin [expression]
Arc sine (inverse sine) of expression in [-Pi/2,Pi/2], expression in [-1,1] (real
valued only).

Cos [expression]

Cosine of expression.

Chapter 6:

Acos

Tan

Atan

Atan?2

Sinh

Cosh

Tanh

TanhC2

Fabs

Abs

Floor

Ceil

Fmod

Min

Max

Sign

Types for objects 45

[expression]

Arc cosine (inverse cosine) of expression in [0,Pi], expression in [-1,1] (real valued
only).

[expression]

Tangent of expression.

[expression]

Arc tangent (inverse tangent) of expression in [-Pi/2,Pi/2] (real valued only).

lexpression, expression]

Arc tangent (inverse tangent) of the first expression divided by the second, in
[-Pi,Pi] (real valued only).

[expression]

Hyperbolic sine of expression.

[expression]

Hyperbolic cosine of expression.

[expression]

Hyperbolic tangent of the real valued expression.

[expression]

Hyperbolic tangent of a complex valued expression.

[expression]

Absolute value of expression (real valued only).

[expression]

Absolute value of expression.

[expression]

Rounds downwards to the nearest integer that is not greater than expression
(real valued only).

[expression]

Rounds upwards to the nearest integer that is not less than expression (real
valued only).

[expression, expression]

Remainder of the division of the first expression by the second, with the sign
of the first (real valued only).

[expression, expression]

Minimum of the two (scalar) expressions (real valued only).
[expression, expression]

Maximum of the two (scalar) expressions (real valued only).
[expression]

-1 for expression less than zero and 1 otherwise (real valued only).

46

Jn

dJn

Yn

dYn

GetDP 3.6.0 (development version)

[expression]

Returns the Bessel function of the first kind of order given by the first expression
for the value of the second expression (real valued only).

[expression]

Returns the derivative of the Bessel function of the first kind of order given by
the first expression for the value of the second expression (real valued only).
[expression]

Returns the Bessel function of the second kind of order given by the first ex-
pression for the value of the second expression (real valued only).

[expression]

Returns the derivative of the Bessel function of the second kind of order given
by the first expression for the value of the second expression (real valued only).

6.2.2 Extended math functions

extended-math-function-id:

Cross

Hypot

Norm

SquNorm

Unit

Transpose

Inv

Det

Rotate

TTrace

[expression, expression]

Cross product of the two arguments; expression must be a vector.

[expression, expression]

Square root of the sum of the squares of its arguments.

[expression]

Absolute value if expression is a scalar; euclidian norm if expression is a vector.

[expression]

Square norm: Norm[expression] 2.

[expression]

Normalization: expression/Norm[expression]. Returns O if the norm is
smaller than 1.e-30.

[expression]

Transposition; expression must be a tensor.
[expression]

Inverse of the tensor expression.

[expression]

Determinant of the tensor expression.

[expression, expression, expression,expression]

Rotation of a vector or tensor given by the first expression by the angles in
radians given by the last three expression values around the x-, y- and z-axis.

[expression]

Trace; expression must be a tensor.

Chapter 6: Types for objects 47

Cos_wt_p [l{expression-cst,expression-cst}

The first parameter represents the angular frequency and the second represents
the phase. If the type of the current system is Real, F_Cos_wt_p[]{w,p} is
identical to Cos [wx$Time+p]. If the type of the current system is Complex, it
is identical to Complex [Cos[p],Sin[p]].

Sin_wt_p [l{expression-cst,expression-cst}
The first parameter represents the angular frequency and the second represents
the phase. If the type of the current system is Real, F_Sin_wt_p[l1{w,p} is
identical to Sin[wx$Time+p]. If the type of the current system is Complex, it
is identical to Complex [Sin[p],-Cos[p]l].

Period [expression]{expression-cst}
Fmod[expression, expression-cst] + (expression<0 ? expression-cst :
0); the result is always in [0,expression-cst]|.

Interval [expression,expression,expression]{expression-cst, expression-

cst,expression-cst}

Not documented yet.

6.2.3 Green functions

The Green functions are only used in integral quantities (see Section 5.7 [Formulation],
page 36). The first parameter represents the dimension of the problem:

e 1D: r = Fabs [$X-$XS]
e 2D: r = Sqrt [($X-$XS) "2+ ($Y-$YS) ~2]
e 3D: r = Sqrt [($X-$XS) "2+ ($Y-$YS) "2+ ($Z-$ZS) ~2]

The triplets of values given in the definitions below correspond to the 1D, 2D and 3D cases.

green-function-id:

Laplace [l{expression-cst}

r/2, 1/(2%Pi)*1n(1/r), 1/ (4*Pix*r).

GradLaplace
[1{expression-cst}

Gradient of Laplace relative to the destination point ($X, $Y, $Z).

Helmholtz

[1{expression-cst, expression-cst}

exp (j*kO*r) / (4*Pi*r), where kO is given by the second parameter.
GradHelmholtz

[1{expression-cst, expression-cst}

Gradient of Helmholtz relative to the destination point ($X, $Y, $Z).

48 GetDP 3.6.0 (development version)

6.2.4 Type manipulation functions
type-function-id:
Complex [expression-list]
Creates a (multi-harmonic) complex expression from an number of real-valued
expressions. The number of expressions in expression-list must be even.
Complex_MH
[expression-list]{expression-cst-1list}

Not documented yet.

Re [expression]

Takes the real part of a complex-valued expression.

Im [expression]

Takes the imaginary part of a complex-valued expression.

Conj [expression]

Computes the conjugate of a complex-valued expression.

Cart2Pol [expression]
Converts the cartesian form (reale, imaginary) of a complex-valued expression
into polar form (amplitude, phase [radians]).

Vector [expression, expression, expression]

Creates a vector from 3 scalars.

Tensor [expression, expression,expression,expression, expression,expression,
expression,expression,expression]

Creates a second-rank tensor of order 3 from 9 scalars, by row:

[scalar0 scalarl scalar2] [CompXX CompXY CompXZ]
T = [scalar3 scalar4 scalar5] = [CompYX CompYY CompYZ]
[scalar6 scalar7 scalar8] [CompZX CompZY CompZZ]

TensorV [expression, expression, expression]

Creates a second-rank tensor of order 3 from 3 row vectors:

[vectorO]
T = [vectorl]
[vector2]

TensorSym

[expression, expression, expression,expression, expression,expression]

Creates a symmetrical second-rank tensor of order 3 from 6 scalars.
TensorDiag

[expression, expression, expression]

Creates a diagonal second-rank tensor of order 3 from 3 scalars.
SquDyadicProduct

[expression]

Dyadic product of the vector given by expression with itself.

Chapter 6: Types for objects 49

CompX [expression]

Gets the X component of a vector.

CompY [expression]

Gets the Y component of a vector.

CompZ [expression]

Gets the Z component of a vector.

CompXX [expression]

Gets the XX component of a tensor.

CompXY [expression]

Gets the XY component of a tensor.

CompXZ [expression]

Gets the XZ component of a tensor.

CompYX [expression]

Gets the YX component of a tensor.

CompYY [expression]

Gets the YY component of a tensor.

CompYZ [expression]

Gets the YZ component of a tensor.

CompZX [expression]

Gets the ZX component of a tensor.

CompZY [expression]

Gets the ZY component of a tensor.

CompZZ [expression]

Gets the ZZ component of a tensor.

Cart2Sph [expression]
Gets the tensor for transformation of vector from cartesian to spherical coordi-
nates.

Cart2Cyl [expression]

Gets the tensor for transformation of vector from cartesian to cylindric coor-
dinates. E.g. to convert a vector with (x,y,z)-components to one with (radial,
tangential, axial)-components: Cart2Cyl[XYZ[]] * vector

UnitVectorX
(]

Creates a unit vector in x-direction.

UnitVectorY
(]

Creates a unit vector in y-direction.

50 GetDP 3.6.0 (development version)

UnitVectorZ
(]

Creates a unit vector in z-direction.

6.2.5 Coordinate functions

coord-function-id:

X]

Gets the X coordinate.
Y]

Gets the Y coordinate.
Z]

Gets the Z coordinate.

XYz]
Gets X, Y and Z in a vector.

6.2.6 Miscellaneous functions

misc-function-id:

Printf [expression]
Prints the value of expression when evaluated. (MPI_Printf can be use instead,
to print the message for all MPI ranks.)

Rand [expression]

Returns a pseudo-random number in [0, expression].

Normal]

Computes the normal to the element.

NormalSource

(]
Computes the normal to the source element (only valid in a quantity of Integral
type).
Tangent 1l
Computes the tangent to the element (only valid for line elements).
TangentSource
(]
Computes the tangent to the source element (only valid in a quantity of Integral
type and only for line elements).
ElementVol
(]

Computes the element’s volume.

Chapter 6: Types for objects 51

SurfaceArea
[1{expression-cst-list}
Computes the area of the physical surfaces in expression-cst-list or of the actual
surface if expression-cst-list is empty.

GetVolume
(1
Computes the volume of the actual physical group.
CompElementNum
(1
Returns 0 if the current element and the current source element are identical.
GetNumElements
[1{expression-cst-list}
Counts the elements of physical numbers in expression-cst-list or of the actual
region if expression-cst-list is empty.
ElementNum

(]

Returns the tag (number) of the current element.
QuadraturePointIndex

(]

Returns the index of the current quadrature point.

AtIndex [expression]{expression-cst-list}
Returns the i-th entry of expression-cst-list. This can be used to get an element
in a list, using an index that is computed at runtime.
InterpolationlLinear
[expression]{expression-cst-list}
Linear interpolation of points. The number of constant expressions in
expression-cst-list must be even.
dInterpolationlLinear
[expression]{expression-cst-list}
Derivative of linear interpolation of points. The number of constant expressions
in expression-cst-list must be even.
InterpolationBilinear
[expression, expression]{expression-cst-1list}
Bilinear interpolation of a table based on two variables.
dInterpolationBilinear
[expression, expression]{expression-cst-1list}
Derivative of bilinear interpolation of a table based on two variables. The result

is a vector.

InterpolationAkima
[expression]{expression-cst-list}

52 GetDP 3.6.0 (development version)

Akima interpolation of points. The number of constant expressions in
expression-cst-list must be even.

dInterpolationAkima
[expression]{expression-cst-list}
Derivative of Akima interpolation of points. The number of constant expres-
sions in expression-cst-list must be even.
Order [quantity]
Returns the interpolation order of the quantity.

Field [expression]
Evaluate the last one of the fields (“views”) loaded with GmshRead (see

Section 6.8 [Types for Resolution], page 59), at the point expression. Common
usage is thus Field [XYZ[]].

Field [expression]{expression-cst-1list}

Idem, but evaluate all the fields corresponding to the tags in the list, and sum
all the values. A field having no value at the given position does not produce
an error: its contribution to the sum is simply zero.

ScalarField
[expression]{expression-cst-list}

Idem, but consider only real-valued scalar fields. A second optional argument
is the value of the time step. A third optional argument is a boolean flag to
indicate that the interpolation should be performed (if possible) in the same
element as the current element.

VectorField
[expression]{expression-cst-list}
Idem, but consider only real-valued vector fields. Optional arguments are
treated in the same way as for ScalarField.

TensorField
[expression]{expression-cst-list}
Idem, but consider only real-valued tensor fields. Optional arguments are
treated in the same way as for ScalarField.

ComplexScalarField
[expression]{expression-cst-list}
Idem, but consider only complex-valued scalar fields. Optional arguments are
treated in the same way as for ScalarField.

ComplexVectorField
[expression]{expression-cst-list}
Idem, but consider only complex-valued vector fields. Optional arguments are
treated in the same way as for ScalarField.

ComplexTensorField
[expression]{expression-cst-list}

Idem, but consider only complex-valued tensor fields. Optional arguments are
treated in the same way as for ScalarField.

Chapter 6: Types for objects 53

Distance [expression]{expression-cst}

Evaluate the distance between the point (whose x, y, z coordinates are given
as a vector argument) and a vector valued view, interpreted as a displacement
field (i.e. compute the minimal distance between the point and the deformed
mesh in the view).

GetCpuTime
(]
Returns current CPU time, in seconds (total amount of time spent executing
in user mode since GetDP was started).

GetWallClockTime
(]
Returns the current wall clock time, in seconds (total wall clock time since
GetDP was started).

GetMemory
(]

Returns the current memory usage, in megabytes (maximum resident set size).

SetNumberRunTime
lexpression]{char-expression}

Sets the char-expression ONELAB variable at run-time to expression.

SetNumberRunTimeWithChoices
lexpression]{char-expression}
Same as SetNumberRunTime, but adds the value to the choices of the ONELAB
variable (i.e. in the same way as SendToServer in PostOperation, which are
used for plotting the history of the variable).

GetNumberRunTime
[<expression>]{char-expression}
Gets the value of the char-expression ONELAB variable at run-time. If the
optional expression is provided, it is used as a default value if ONELAB is not
available.

SetVariable
[expression <,...>]{ $variable-id }
Sets the value of the runtime variable $variable-id to the value of the first
expression, and returns this value. If optional expressions are provided, they
are appended to the variable name, separated by _.

GetVariable
[<expression> <,...>]1{ $variable-id }

Gets the value of the runtime variable $variable-id. If the optional expres-
sions are provided, they are appended to the variable name, separated by _.

ValueFromIndex
[1{ expression-cst-1list }

54 GetDP 3.6.0 (development version)
Treats expression-cst-list as a map of (entity, value) pairs. Useful to specify
nodal or element-wise constraints, where entity is the node (mesh vertex) or
element number (tag).

VectorFromIndex
[1{ expression-cst-list }

Same ValueFromIndex, but with 3 scalar values per entity.

ValueFromTable

[expression 1{ char-expression }
Accesses the map char-expression created by a NodeTable or ElementTable
PostOperation, or by the ReadTable operation, at the key corresponding to
the current entity (node or element tag). If the map is not available (e.g. in
pre-processing), or if the entity key is not found in the map, use expression as
default value. Useful e.g. to specify nodal or element-wise constraints, where
entity is the node (mesh vertex) or element number (tag).

ValueFromMap

[expression]{ char-expression }

Accesses the map char-expression created by a NodeTable or ElementTable
PostOperation, or by the ReadTable operation, at the key expression specified
as argument.

6.3 Types for Constraint

constraint-type:

Assign

Init

To assign a value (e.g., for boundary condition).

To give an initial value (e.g., initial value in a time domain analysis). If two
values are provided (with Value [expression, expression]), the first value
can be used using the InitSolutionl operation. This is mainly useful for the
Newmark time-stepping scheme.

AssignFromResolution

To assign a value to be computed by a pre-resolution.

InitFromResolution

Network

Link

To give an initial value to be computed by a pre-resolution.
To describe the node connections of branches in a network.

To define links between degrees of freedom in the constrained region with de-
grees of freedom in a “reference” region, with some coefficient. For example,
to link the degrees of freedom in the contrained region Left with the degrees
of freedom in the reference region Right, located Pi units to the right of the
region Left along the X-axis, with the coeficient -1, one could write:
{ Name periodic;
Case {
{ Region Left; Type Link ; RegionRef Right;
Coefficient -1; Function Vector [X[]+Pi, Y[1, Z[1] ;

Chapter 6: Types for objects 55

< FunctionRef XYZ[]; >
}
}
}

In this example, Function defines the mapping that translates the geometrical
elements in the region Left by Pi units along the X-axis, so that they correspond
with the elements in the reference region Right. For this mapping to work,
the meshes of Left and Right must be identical. (The optional FunctionRef
function allows to transform the reference region, useful e.g. to avoid generating
overlapping meshes for rotational links.)

LinkCplx To define complex-valued links between degrees of freedom. The syntax is the
same as for constraints of type Link, but Coeficient can be complex.

6.4 Types for FunctionSpace

function-space-type:

FormO 0-form, i.e., scalar field of potential type.

Forml 1-form, i.e., curl-conform field (associated with a curl).

Form2 2-form, i.e., div-conform field (associated with a divergence).

Form3 3-form, i.e., scalar field of density type.

Form1P 1-form perpendicular to the z=0 plane, i.e., perpendicular curl-conform field
(associated with a curl).

Form2P 2-form in the z=0 plane, i.e., parallel div-conform field (associated with a di-
vergence).

Scalar Scalar field.

Vector Vector field.

basis-function-type:

BF_Node Nodal function (on Nodes0f, value Form0).
BF_Edge Edge function (on EdgesOf, value Form1).
BF_Facet Facet function (on FacetsOf, value Form2).

BF_Volume
Volume function (on Volumes0f, value Form3).

BF_GradNode
Gradient of nodal function (on NodesOf, value Form1).

BF_CurlEdge
Curl of edge function (on Edges0f, value Form2).

BF_DivFacet
Divergence of facet function (on Facets0f, value Form3).

BF_GroupOfNodes
Sum of nodal functions (on GroupsO0fNodesO0f, value Form0).

56 GetDP 3.6.0 (development version)

BF_GradGroupOfNodes
Gradient of sum of nodal functions (on Groups0fNodes0f, value Form1).

BF_GroupOfEdges
Sum of edge functions (on GroupsOfEdgesOf, value Forml).

BF_CurlGroupOfEdges
Curl of sum of edge functions (on Groups0fEdges0f, value Form2).

BF_PerpendicularEdge
1-form (0, 0, BF_Node) (on NodesOf, value Form1P).

BF_CurlPerpendicularEdge
Curl of 1-form (0, 0, BF_Node) (on NodesOf, value Form2P).

BF_GroupOfPerpendicularEdge
Sum of 1-forms (0, 0, BF_Node) (on NodesOf, value Form1P).

BF_CurlGroupOfPerpendicularEdge
Curl of sum of 1-forms (0, 0, BF_Node) (on NodesOf, value Form2P).

BF_PerpendicularFacet
2-form (90 degree rotation of BF_Edge) (on Edges0f, value Form2P).

BF_DivPerpendicularFacet
Div of 2-form (90 degree rotation of BF_Edge) (on Edges0f, value Form3).

BF_Region
Unit value 1 (on Region or GroupOfRegionsO0f, value Scalar).

BF_RegionX
Unit vector (1, 0, 0) (on Region, value Vector).

BF_RegionY
Unit vector (0, 1, 0) (on Region, value Vector).

BF_RegionZ
Unit vector (0, 0, 1) (on Region, value Vector).

BF_Global
Global pre-computed quantity (on Global, value depends on parameters).

BF_dGlobal

Exterior derivative of global pre-computed quantity (on Global, value depends

on parameters).
BF_NodeX Vector (BF_Node, 0, 0) (on NodesOf, value Vector).
BF_NodeY Vector (0, BF_Node, 0) (on NodesOf, value Vector).
BF_NodeZ Vector (0, 0, BF_Node) (on NodesOf, value Vector).
BF_Zero Zero value 0 (on all regions, value Scalar).
BF_One Unit value 1 (on all regions, value Scalar).
global-quantity-type:

AliasOf Another name for a name of coefficient of basis function.

Chapter 6: Types for objects 57

AssociatedWith
A global quantity associated with a name of coefficient of basis function, and
therefore with this basis function.

6.5 Types for Jacobian

Jjacobian-type:

Vol Volume Jacobian, for n-D regions in n-D geometries, n = 1, 2 or 3.

Sur Surface Jacobian, for (n-1)-D regions in n-D geometries, n = 1, 2 or 3.

Lin Line Jacobian, for (n-2)-D regions in n-D geometries, n = 2 or 3.

VolAxi Axisymmetrical volume Jacobian (1st type: r), for 2-D regions in axisymmet-

rical geometries.

SurAxi Axisymmetrical surface Jacobian (1st type: r), for 1-D regions in axisymmet-
rical geometries.

VolAxiSqu
Axisymmetrical volume Jacobian (2nd type: 72), for 2-D regions in axisymmet-
rical geometries.

VolSphShell
Volume Jacobian with spherical shell transformation, for n-D regions in n-D
geometries, n = 2 or 3. For n=2, the value of center-Z has no effect and the
transformation is in the XY plane. An external radius of 0 can be used for the
Kelvin (inversion) transformation.
Parameters: radius-internal, radius-external <, center-X, center-Y, center-Z,
power, 1/infinity >.

VolCylShell
Volume Jacobian with cylindrical shell transformation, for n-D regions in n-D
geometries, n = 2 or 3. For n=2, VolCylShell reverts to VolSphShell and
the axis parameter below has no effect (and should be omitted). An external
radius of 0 can be used for the Kelvin (inversion) transformation.
Parameters: radius-internal, radius-external <, axis, center-X, center-Y, center-
Z, power, 1/infinity >.

VolAxiSphShell
Same as VolAxi, but with spherical shell transformation.
Parameters: radius-internal, radius-external <, center-X, center-Y, center-Z,
power, 1/infinity >.

VolAxiSquSphShell
Same as VolAxiSqu, but with spherical shell transformation.
Parameters: radius-internal, radius-external <, center-X, center-Y, center-Z,
power, 1/infinity >.

VolRectShell

Volume Jacobian with rectangular shell transformation, for n-D regions in n-D
geometries, n = 2 or 3.

58 GetDP 3.6.0 (development version)

Parameters: radius-internal, radius-external <, direction, center-X, center-Y,
center-Z, power, 1/infinity >.

VolAxiRectShell
Same as VolAxi, but with rectangular shell transformation.

Parameters: radius-internal, radius-external <, direction, center-X, center-Y,
center-Z, power, 1/infinity >.

VolAxiSquRectShell
Same as VolAxiSqu, but with rectangular shell transformation.

Parameters: radius-internal, radius-external <, direction, center-X, center-Y,
center-Z, power, 1/infinity >.

6.6 Types for Integration

integration-type:

Gauss Numerical Gauss integration.

GaussLegendre
Numerical Gauss integration obtained by application of a multiplicative rule on
the one-dimensional Gauss integration.

element-type:
Line Line (2 nodes, 1 edge, 1 volume) (#1).
Triangle Triangle (3 nodes, 3 edges, 1 facet, 1 volume) (#2).

Quadrangle
Quadrangle (4 nodes, 4 edges, 1 facet, 1 volume) (#3).

Tetrahedron
Tetrahedron (4 nodes, 6 edges, 4 facets, 1 volume) (#4).

Hexahedron
Hexahedron (8 nodes, 12 edges, 6 facets, 1 volume) (#5).

Prism Prism (6 nodes, 9 edges, 5 facets, 1 volume) (#6).
Pyramid Pyramid (5 nodes, 8 edges, 5 facets, 1 volume) (#7).

Point Point (1 node) (#15).
Note:
1. n in (#n) is the type number of the element (see Section A.1 [Input file format],
page 111).

6.7 Types for Formulation
formulation-type:

FemEquation
Finite element method formulation (all methods of moments, integral methods).

local-term-type:

Chapter 6: Types for objects 59

Integral Integral of Galerkin or Petrov-Galerkin type.
quantity-type:

Local Local quantity defining a field in a function space. In case a subspace is
considered, its identifier has to be given between the brackets following the
NameOfSpace function-space-id.

Global Global quantity defining a global quantity from a function space. The identifier
of this quantity has to be given between the brackets following the NameOf Space
function-space-id.

Integral Integral quantity obtained by the integration of a LocalQuantity before its use
in an Equation term.

term-op-type:

Dt Time derivative applied to the whole term of the equation. (Not implemented
yet.)

DtDof Time derivative applied only to the Dof{} term of the equation.

DtDt Time derivative of 2nd order applied to the whole term of the equation. (Not

implemented yet.)
DtDtDof Time derivative of 2nd order applied only to the Dof{} term of the equation.

Eig The term is multiplied by (a certain function of) the eigenvalue. This is to
be used with the GenerateSeparate and EigenSolve Resolution operations.
An optional Order expression; or Rational expression; statement can be
added in the term to specify the eigenvalue function. Full documentation of
this feature is not available yet.

JacNL Nonlinear part of the Jacobian matrix (tangent stiffness matrix) to be assembled
for nonlinear analysis.

DtDof JacNL
Nonlinear part of the Jacobian matrix for the first order time derivative (tangent
mass matrix) to be assembled for nonlinear analysis.

NeverDt No time scheme applied to the term (e.g., Theta is always 1 even if a theta
scheme is applied).

6.8 Types for Resolution
resolution-op:

Generate [system-id]

Generate the system of equations system-id.
Solve [system-id]

Solve the system of equations system-id.

SolveAgain
[system-id]
Save as Solve, but reuses the preconditionner when called multiple times.

60

GetDP 3.6.0 (development version)

SetGlobalSolverOptions

[char-expression]

Set global PETSc solver options (with the same syntax as PETSc options spec-
ified on the command line, e.g. "-ksp_type gmres -pc_type ilu").

GeneratelJac

SolveJac

[system-id]

Generate the system of equations system-id using a jacobian matrix (of which
the unknowns are corrections dx of the current solution x).

[system-id]

Solve the system of equations system-id using a jacobian matrix (of which the

unknowns are corrections dx of the current solution x). Then, Increment the
solution (x=x+dx) and compute the relative error dx/x.

GenerateSeparate

[system-id]

Generate matrices separately for DtDtDof, DtDof and NoDt terms in system-
id. The separate matrices can be used with the Update operation (for efficient
time domain analysis of linear PDEs with constant coefficients), or with the
EigenSolve operation (for solving generalized eigenvalue problems).

GenerateOnly

[system-id, expression-cst-1list]

Not documented yet.

GenerateOnlyJac

[system-id, expression-cst-1list]

Not documented yet.

GenerateGroup

Not documented yet.

GenerateRightHandSideGroup

Update

Update

Not documented yet.

[system-id]

Update the system of equations system-id (built from sub-matrices generated
separately with GenerateSeparate) with the TimeFunction(s) provided in
Assign constraints. This assumes that the problem is linear, that the ma-
trix coefficients are independent of time, and that all sources are imposed using
Assign constraints.

[system-id, expression]

Update the system of equations system-id (built from sub-matrices generated
separately with GenerateSeparate) with expression. This assumes that the
problem is linear, that the matrix coefficients are independent of time, and that
the right-hand-side of the linear system can simply be multiplied by expression
at each step.

Chapter 6: Types for objects 61

UpdateConstraint
[system-id, group-id, constraint-type]
Recompute the constraint of type constraint-type acting on group-id during
processing.

GetResidual
[system-id, $variable-id]

Compute the residual r = b - A x and store its L2 norm in the run-time variable

$variable-id.

GetNormSolution | GetNormRightHandSide | GetNormResidual | GetNormIncrement
[system-id, $variable-id <, norm-type >]
Compute the norm of the solution (resp. right-hand-side, residual or increment)
and store its norm in the run-time variable $variable-id. Possible choices for
norm-type: L2Norm (default) and LinfNorm.

SwapSolutionAndResidual
[system-id]
Swap the solution x and residual r vectors.

SwapSolutionAndRightHandSide
[system-id]
Swap the solution x and right-hand-side b vectors.

InitSolution

[system-id]

Creates a new solution vector, adds it to the solution vector list for system-id,
and initializes the solution. The values in the vector are initialized to the values
given in a Constraint of Init type (if two values are given in Init, the second
value is used). If no constraint is provided, the values are initialized to zero
if the solution vector is the first in the solution list; otherwise the values are
initialized using the previous solution in the list.

InitSolutionl
[system-id]
Same as InitSolution, but uses the first value given in the Init constraints.

CreateSolution
[system-id]
Creates a new solution vector, adds it to the solution vector list for system-id,
and initializes the solution to zero.

CreateSolution
[system-id, expression-cst]

Same as CreateSolution, but initialize the solution by copying the expression-
cstth solution in the solution list.

Apply [system-id]
x <- Ax

62 GetDP 3.6.0 (development version)

SetSolutionAsRightHandSide
[system-id]
b <-x
SetRightHandSideAsSolution
[system-id]
x<-b
Residual [system-id]
res <- b - Ax
CopySolution
[system-id, char-expression | constant-id () <, SendToServer
char-expression >]
Copy the current solution x into a vector named char-expression or into a list

named constant-id. In the latter case, if SendToServer is provided, copy the
list to the ONELAB server as well.

CopySolution
[char-expression | constant-id (), system-id]
Copy the vector named char-expression or the list named constant-id into the
current solution x.

CopyRightHandSide
[system-id, char-expression | constant-id() <, SendToServer

char-expression >]

Copy the current right-hand side b into a vector named char-expression or into
a list named constant-id. In the latter case, if SendToServer is provided, copy
the list to the ONELAB server as well.

CopyRightHandSide
[char-expression | constant-id (), system-id]
Copy the vector named char-expression or the list named constant-id into the
current right-hand-side b.

CopyResidual
[system-id, char-expression | constant-id () <, SendToServer
char-expression >]
Copy the current residual into a vector named char-expression or into a list
named constant-id. In the latter case, if SendToServer is provided, copy the
list to the ONELAB server as well.

CopyResidual
[char-expression | constant-id (), system-id]
Copy the vector named char-expression or the list named constant-id into the
current residual.

SaveSolution
[system-id]
Save the solution of the system of equations system-id.

Chapter 6: Types for objects 63

SaveSolutions
[system-id]
Save all the solutions available for the system of equations system-id. This
should be used with algorithms that generate more than one solution at once,
e.g., EigenSolve or FourierTransform.

RemovelLastSolution
[system-id]
Removes the last solution (i.e. associated with the last time step) associated
with system system-id.

TransferSolution
[system-id]
Transfer the solution of system system-id, as an Assign constraint, to the sys-
tem of equations defined with a DestinationSystem command. This is used
with the AssignFromResolution constraint type (see Section 6.3 [Types for
Constraint], page 54).

Evaluate [expression <, expression>]

Evaluate the expression(s).

SetTime [expression]
Change the current time.
SetTimeStep
[expression]

Change the current time step number (1, 2, 3, ...)

SetDTime [expression]

Change the current time step value (dt).
SetFrequency

[system-id, expression]

Change the frequency of system system-id.
SystemCommand

[expression-char]

Execute the system command given by expression-char.
Error [expression-char]
Output error message expression-char.
Test [expression] { resolution-op }
If expression is true (nonzero), perform the operations in resolution-op.

Test [expression] { resolution-op } { resolution-op }

If expression is true (nonzero), perform the operations in the first resolution-op,
else perform the operations in the second resolution-op.

While [expression] { resolution-op }

While expression is true (nonzero), perform the operations in resolution-op.

64 GetDP 3.6.0 (development version)

Break (]
Aborts an iterative loop, a time loop or a While loop.

Exit (]
Exit, brutally.

Sleep [expression]

Sleeps for expression seconds;

SetExtrapolationOrder
[expression-cst]
Chooses the extrapolation order to compute the initialization of the solution
vector in time loops. Default is 0.

Print [{ expression-list } <, File expression-char > <, Format
expression-char >]

Print the expressions listed in expression-list. If Format is given, use it to
format the (scalar) expressions like Printf.

Print [system-id <, File expression-char > <, { expression-cst-list } >
<, TimeStep { expression-cst-list } >]
Print the system system-id. If the expression-cst-list is given, print only the
values of the degrees of freedom given in that list. If the TimeStep option is
present, limit the printing to the selected time steps.

EigenSolve
[system-id, expression-cst, expression-cst, expression-cst < ,
expression >]

Eigenvalue/eigenvector computation using Arpack or SLEPc. The parameters
are: the system (which has to be generated with GenerateSeparatel[]), the
number of eigenvalues/eigenvectors to compute and the real and imaginary
spectral shift (around which to look for eigenvalues). The last optional argu-
ment allows to filter which eigenvalue/eigenvector pairs will be saved. For ex-
ample, ($EigenvalueReal > 0) would only keep pairs corresponding to eigen-
values with a striclty positive real part.

Lanczos [system-id, expression-cst, { expression-cst-1list } , expression-
cst]

Eigenvalue/eigenvector computation using the Lanczos algorithm. The param-
eters are: the system (which has to be generated with GenerateSeparatel[]),
the size of the Lanczos space, the indices of the eigenvalues/eigenvectors to
store, the spectral shift. This routine is deprecated: use EigenSolve instead.

FourierTransform
[system-id, system-id, { expression-cst-1ist }]
On-the-fly (incremental) computation of a Fourier transform. The parameters
are: the (time domain) system, the destination system in which the result of
the Fourier tranform is to be saved (it should be declared with Type Complex)
and the list of frequencies to consider. The computation is an approximation

Chapter 6: Types for objects 65

that assumes that the time step is constant; it is not an actual Discrete Fourier
Transform (the number of samples is unknown a priori).

TimeLoopTheta
[expression-cst,expression-cst,expression, expression-cst] {
resolution-op }
Time loop of a theta scheme. The parameters are: the initial time, the end
time, the time step and the theta parameter (e.g., 1 for implicit Euler, 0.5 for
Crank-Nicholson).

Warning: GetDP automatically handles time-dependent constraints when
they are provided using the TimeFunction mechanism in an Assign-type
Constraint (see Section 5.3 [Constraint|, page 31). However, GetDP
cannot automatically transform general time-dependent source terms in weak
formulations (time-dependent functions written in a Integral term). Such
source terms will be correctly treated only for implicit Euler, as the expression
in the Integral term is evaluated at the current time step. For other schemes,
the source term should be written explicitly, by splitting it in two (theta
f_n+1 + (1-theta) f_n), making use of the AtAnteriorTimeStep[] for the
second part, and specifying NeverDt in the Integral term.

TimeLoopNewmark
[expression-cst,expression-cst,expression, expression-
cst,expression-cst]

{ resolution-op }

Time loop of a Newmark scheme. The parameters are: the initial time, the end
time, the time step, the beta and the gamma parameter.

Warning: same restrictions apply for time-dependent functions in the weak
formulations as for TimeLoopTheta.

TimeLoopAdaptive
[expression-cst,expression-cst,expression-cst,expression-cst,
expression-cst,integration—-method,<expression-cst-list>,

System { {system-id, expression-cst,expression-cst,norm-type} ... }
|

PostOperation { {post-operation-id, expression-cst,expression-
cst,norm-type} ... }]

{ resolution-op }

{ resolution-op }

Time loop with variable time steps. The step size is adjusted according the
local truncation error (LTE) of the specified Systems/PostOperations via a
predictor-corrector method.

The parameters are: start time, end time, initial time step, min. time step,
max. time step, integration method, list of breakpoints (time points to be
hit). The LTE calculation can be based on all DOFs of a system and/or on
a PostOperation result. The parameters here are: System/PostOperation for
LTE assessment, relative LTE tolerance, absolute LTE tolerance, norm-type for
LTE calculation.

Possible choices for integration-method are: Euler, Trapezoidal, Gear_2,

66

GetDP 3.6.0 (development version)

Gear_3, Gear_4, Gear_5, Gear_6. The Gear methods correspond to backward
differentiation formulas of order 2..6.

Possible choices for norm-type: L1Norm, MeanL1Norm, L2Norm, MeanL2Norm,
LinfNorm.

MeanL1Norm and MeanL2Norm correspond to L1Norm and L2Norm divided by the
number of degrees of freedom, respectively.

The first resolution-op is executed every time step. The second one is only
executed if the actual time step is accepted (LTE is in the specified range).
E.g. SaveSolution[] is usually placed in the 2nd resolution-op.

Iterativeloop

[expression-cst,expression,expression-cst<,expression-cst>] {
resolution-op ¥}

Iterative loop for nonlinear analysis. The parameters are: the maximum number
of iterations (if no convergence), the relative error to achieve and the relaxation
factor (multiplies the iterative correction dx). The optional parameter is a flag
for testing purposes.

IterativeLoopN

[expression-cst,expression,

System { {system-id, expression-cst,expression-cst, assessed-object
norm-type} ... } |

PostOperation { {post-operation-id, expression-cst,expression-cst,
norm-type} ... }1]

{ resolution-op }

Similar to IterativeLoop[] but allows to specify in detail the tolerances and
the type of norm to be calculated for convergence assessment.

The parameters are: the maximum number of iterations (if no convergence),
the relaxation factor (multiplies the iterative correction dx). The convergence
assessment can be based on all DOFs of a system and/or on a PostOperation
result. The parameters here are: System/PostOperation for convergence assess-
ment, relative tolerance, absolute tolerance, assessed object (only applicable for
a specified system), norm-type for error calculation.

Possible choices for assessed-object: Solution, Residual, RecalcResidual.
Residual assesses the residual from the last iteration whereas RecalcResidual
calculates the residual once again after each iteration. This means that with
Residual usually one extra iteration is performed, but RecalcResidual causes
higher computational effort per iteration. Assessing the residual can only be
used for Newton’s method.

Possible choices for norm-type: LiNorm, MeanL1Norm, L2Norm, MeanL2Norm,
LinfNorm.

MeanL1Norm and MeanL2Norm correspond to L1Norm and L2Norm divided by the
number of degrees of freedom, respectively.

IterativelLinearSolver

Generic iterative linear solver. To be documented.

Chapter 6: Types for objects 67

PostOperat

GmshRead

GmshRead

GmshRead

GmshWrite

GmshClearA

ReadTable

DeleteFile

RenameFile

CreateDir

ion
[post-operation-id]
Perform the specified PostOperation.

[expression-char]

When GetDP is linked with the Gmsh library, read a file using Gmsh. This
file can be in any format recognized by Gmsh. If the file contains one or
multiple post-processing fields, these fields will be evaluated using the built-
in Field[], ScalarField[], VectorField[], etc., functions (see Section 6.2.6
[Miscellaneous functions], page 50).

(Note that GmshOpen and GmshMerge can be used instead of GmshRead to force
Gmsh to do classical “open” and “merge” operations, instead of trying to “be
intelligent” when reading post-processing datasets, i.e., creating new models on
the fly if necessary.)

[expression-char, expression-cst]

Same thing as the GmshRead command above, except that the field is forced to
be stored with the given tag. The tag can be used to retrieve the given field
with the built-in Field[], ScalarField[], VectorField[], etc., functions (see
Section 6.2.6 [Miscellaneous functions], page 50).

[expression-char, $string]

Same as the GmshRead, but evaluates expression-char by replacing a double
precision format specifier with the value of the runtime variable $string.

[expression-char, expression-cst]

Writes the a Gmsh field to disk. (The format is guessed from the file extension.)
11

(]

Clears all Gmsh data (loaded with GmshRead and friends).

[expression-char, expression-char]

Reads tabular data in the same format as ListFromFile, and stores in the
run-time table named after the second expression-char.

[expression-char]
Delete a file.

[expression-char, expression-char]
Rename a file.

| CreateDirectory
[expression-char]

Create a directory.

68 GetDP 3.6.0 (development version)

MPI_SetCommSelf
(]

Changes MPI communicator to self.

MPI_SetCommWorld
(]

Changes MPI communicator to world.

MPI_Barrier

(]

MPI barrier (blocks until all processes have reached this call).
MPI_BroadcastFields

[< expression-list >]

Broadcast all fields over MPI (except those listed in the list).
MPI_BroadcastVariables

(]

Broadcast all runtime variables over MPI.

6.9 Types for PostProcessing
post-value:

Local { local-value }

To compute a local quantity.

Integral A integral-value }

To integrate the expression over each element.

6.10 Types for PostOperation
print-support:
OnElements0Of
group-def
To compute a quantity on the elements belonging to the region group-def, where
the solution was computed during the processing stage.
OnRegion group-def
To compute a global quantity associated with the region group-def.

OnGlobal To compute a global integral quantity, with no associated region.

OnSection
{ { expression-cst-list } { expression-cst-list } { expression-cst-list } }
To compute a quantity on a section of the mesh defined by three points (i.e., on
the intersection of the mesh with a cutting a plane, specified by three points).
Each expression-cst-list must contain exactly three elements (the coordinates
of the points).

Chapter 6:

OnGrid

OnGrid

OnPoint

OnLine

OnPlane

OnBox

Types for objects 69

group-def

To compute a quantity in elements of a mesh which differs from the real support
of the solution. OnGrid group-def differs from OnElementsOf group-def by
the reinterpolation that must be performed.

{ expression, expression, expression }

{ expression-cst-list-item | { expression-cst-list } ,
expression-cst-list-item | { expression-cst-list } ,
expression-cst-list-item | { expression-cst-1ist } }

To compute a quantity on a parametric grid. The three expressions repre-

sent the three cartesian coordinates x, y and z, and can be functions of the

current values $A, $B and $C. The values for $A, $B and $C are specified
by each expression-cst-list-item or expression-cst-list. For example, OnGrid

{Cos[$A], Sin[$A], 0} { 0:2%Pi:Pi/180, 0, 0 } will compute the quantity

on 360 points equally distributed on a circle in the z=0 plane, and centered on

the origin.

{ expression-cst-list }

To compute a quantity at a point. The expression-cst-list must contain exactly
three elements (the coordinates of the point).

{ { expression-cst-list } { expression-cst-list } } { expression-cst }

To compute a quantity along a line (given by its two end points), with an
associated number of divisions equal to expression-cst. The interpolation points
on the line are equidistant. Each expression-cst-list must contain exactly three
elements (the coordinates of the points).

{ { expression-cst-list } { expression-cst-list } { expression-cst-list } }

{ expression-cst, expression-cst }

To compute a quantity on a plane (specified by three points: the origin and the
end of the unit vectors), with an associated number of divisions equal to each
expression-cst along both generating directions. Each expression-cst-list must
contain exactly three elements (the coordinates of the points).

{ { expression-cst-list } { expression-cst-list } { expression-cst-list }
{ expression-cst-list } } { expression-cst, expression-cst,
expression-cst }

To compute a quantity in a box (specified by four points), with an associated
number of divisions equal to each expression-cst along the three generating
directions. Each expression-cst-list must contain exactly three elements (the
coordinates of the points).

print-option:

File

File

expression—char

Outputs the result in a file named expression-char.

> expression-char

Same as File expression-char, except that, if several File > expression-
char options appear in the same PostOperation, the results are concatenated
in the file expression-char.

70 GetDP 3.6.0 (development version)

File >> expression-char
Appends the result to a file named expression-char.
AppendToExistingFile
expression-cst
Appends the result to the file specified with File. (Same behavior as > if
expression-cst = 1; same behavior as >> if expression-cst = 2.)
Name | Label
expression—char
For formats that support it, sets the label of the output field to expression-char
(also used with with SendToServer to force the label).
Depth expression-cst

Recursive division of the elements if expression-cst is greater than zero, dere-
finement if expression-cst is smaller than zero. If expression-cst is equal to zero,
evaluation at the barycenter of the elements.

AtGaussPoints
expression-cst
Print result at the specified number of Gauss points.
Skin Computes the result on the boundary of the region.
Smoothing
< expression-cst >
Smoothes the solution at the nodes.
HarmonicToTime
expression-cst
Converts a harmonic solution into a time-dependent one (with expression-cst
steps).
Dimension
expression-cst
Forces the dimension of the elements to consider in an element search. Specifies
the problem dimension during an adaptation (h- or p-refinement).
TimeStep expression-cst-list-item | { expression-cst-1list }
Outputs results for the specified time steps only.
TimeValue
expression-cst-list-item | { expression-cst-list }
Outputs results for the specified time value(s) only.
TimeImagValue
expression-cst-list-item | { expression-cst-1list }
Outputs results for the specified imaginary time value(s) only.
LastTimeStepOnly

Outputs results for the last time step only (useful when calling a PostOperation
directly in a Resolution, for example).

Chapter 6: Types for objects 71

AppendExpressionToFileName
expression

Evaluate the given expression at run-time and append it to the filename.
AppendExpressionFormat
expression-char
C-style format string for printing the expression provided in
AppendExpressionToFileName. Default is "%.16g".
AppendTimeStepToFileName
< expression-cst >
Appends the time step to the output file; only makes sense with
LastTimeStepOnly.
AppendStringToFileName
expression-char
Append the given expression-char to the filename.
OverrideTimeStepValue
expression-cst

Overrides the value of the current time step with the given value.

NoMesh < expression-cst >
Prevents the mesh from being written in the output file (useful with new mesh-
based solution formats).

SendToServer
expression-char
Send the value to the Onelab server, using expression-char as the parameter
name.

SendToServer
expression-char { expression-cst-list }
Send the requested harmonics of the value to the Onelab server, using
expression-char as the parameter name.

Color expression-char

Used with SendToServer, sets the color of the parameter in the Onelab server.

Hidden < expression-cst >

Used with SendToServer, selects the visibility of the exchanged value.

Closed expression-char
Used with SendToServer, closes (or opens) the subtree containing the param-
eter.

Units expression-char

Used with SendToServer, sets the units of the parameter in the Onelab server.

Frequency
expression-cst-list-item | { expression-cst-1ist }

Outputs results for the specified frequencies only.

72 GetDP 3.6.0 (development version)
Format post-operation-fmt
Outputs results in the specified format.
Adapt P1 | H1 | H2
Performs p- or h-refinement on the post-processing result, considered as an error
map.
Target expression-cst
Specifies the target for the optimizer during adaptation (error for P1|H1, num-
ber of elements for H2).
Value expression-cst-list-item | { expression-cst-list }
Specifies acceptable output values for discrete optimization (e.g. the available
interpolation orders with Adapt P1).
Sort Position | Connection
Sorts the output by position (x, y, z) or by connection (for LINE elements only).
Iso expression-cst
Outputs directly contour prints (with expression-cst values) instead of elemen-
tary values.
Iso { expression-cst-list }
Outputs directly contour prints for the values specified in the expression-cst-list
instead of elementary values.
NoNewLine
Suppresses the new lines in the output when printing global quantities (i.e.,
with Print OnRegion or Print OnGlobal).
ChangeOfCoordinates
{ expression, expression, expression }
Changes the coordinates of the results according to the three expressions given
in argument. The three expressions represent the three new cartesian coordi-
nates x, y and z, and can be functions of the current values of the cartesian
coordinates $X, $Y and $Z.
ChangeOfValues
{ expression-list }
Changes the values of the results according to the expressions given in argument.
The expressions represent the new values (x-compoment, y-component, etc.),
and can be functions of the current values of the solution ($Val0, $Vall, etc.).
DecomposeInSimplex
Decomposes all output elements in simplices (points, lines, triangles or tetra-
hedra).
StoreInVariable

$expression-char

Stores the result of a point-wise evaluation or an OnRegion post-processing
operation in the run-time variable $code[$]expression-char.

Chapter 6: Types for objects 73

StoreInRegister
expression-cst

Stores the result of point-wise evaluation or an OnRegion post-processing oper-
ation in the register expression-cst.

StoreMinInRegister
StoreMaxInRegister
expression—-cst

Stores the minimum or maximum value of an OnElementsOf post-processing
operation in the register expression-cst.

StoreMinXinRegister
StoreMinYinRegister
StoreMinZinRegister
StoreMaxXinRegister
StoreMaxYinRegister
StoreMaxZinRegister
expression-cst

Stores the X, Y or Z coordinate of the location, where the minimum or max-
imum of an OnElementsOf post-processing operation occurs, in the register
expression-cst.

StorelnField
expression-cst

Stores the result of a post-processing operation in the field (Gmsh list-based
post-processing view) with tag expression-cst.

StoreInMeshBasedField
expression-cst

Stores the result of a post-processing operation in the mesh-based field (Gmsh
mesh-based post-processing view) with tag expression-cst.

TimeLegend
< { expression, expression, expression } >
Includes a time legend in Gmsh plots. If the three optional expressions giving
the position of the legend are not specified, the legend is centered on top of the
plot.

FrequencyLegend
< { expression, expression, expression } >
Includes a frequency legend in Gmsh plots. If the three optional expressions
giving the position of the legend are not specified, the legend is centered on top
of the plot.

EigenvaluelLegend
< { expression, expression, expression } >
Includes an eigenvalue legend in Gmsh plots. If the three optional expressions
giving the position of the legend are not specified, the legend is centered on top
of the plot.

74

GetDP 3.6.0 (development version)

post-operation-fmt:

Gmsh
GmshParsed

Table

SimpleTabl

TimeTable

NodeTable

ElementTab

Gnuplot

Adaptation

Gmsh output. See Section A.1 [Input file format], page 111 and the documen-
tation of Gmsh (http://gmsh.info) for a description of the file formats.

Space oriented column output, e.g., suitable for Gnuplot, Excel, Caleida Graph,
etc. The columns are: element-type element-index x-coord y-coord z-coord
<x-coord y-coord z-coord> ... real real real values. The three real numbers
preceding the values contain context-dependent information, depending on the
type of plot: curvilinear abscissa for OnLine plots, normal to the plane for
OnPlane plots, parametric coordinates for parametric OnGrid plots, etc.

e
Like Table, but with only the x-coord y-coord z-coord and values columns.

Time oriented column output, e.g., suitable for Gnuplot, Excel, Caleida Graph,
etc. The columns are: time-step time x-coord y-coord z-coord <x-coord y-coord
z-coord> . .. value.

Table of nodal values, in the form node-number node-value(s). When exported
to a file, the total number of nodal values is printed first. The data is automati-
cally exported as a run-time accessible list as well as a ONELAB variable, with
the name of the PostOperation quantity. The values are also directly usable
by the ValueFromTable function, which allows to use them as values in a nodal
Constraint.

le

Table of element values, in the form element-number element-node-value(s).
When exported to a file, the total number of element values is printed first.
The data is automatically exported as a run-time accessible list as well as a
ONELARB variable, with the name of the PostOperation quantity. The values
are also directly usable by the ValueFromTable function, which allows to use
them as values in an element-wise Constraint.

Space oriented column output similar to the Table format, except that a new
line is created for each node of each element, with a repetition of the first node
if the number of nodes in the element is greater than 2. This permits to draw
unstructured meshes and nice three-dimensional elevation plots in Gnuplot.
The columns are: element-type element-index x-coord y-coord z-coord real
real real values. The three real numbers preceding the values contain context-
dependent information, depending on the type of plot: curvilinear abscissa for
OnLine plots, normal to the plane for OnPlane plots, parametric coordinates
for parametric OnGrid plots, etc.

Adaptation map, suitable for the GetDP -adapt command line option.

http://gmsh.info

Chapter 7: Short examples 75

7 Short examples

7.1 Constant expression examples

The simplest constant expression consists of an integer or a real number as in
21
-3

or
-3.1415

27e3
-290.53e-12

Using operators and the classic math functions, constant-ids can be defined:

cl Sin[2/3%3.1415] * 5000°2;
c2 -1/c1;

7.2 Group examples

Let us assume that some elements in the input mesh have the region numbers 1000, 2000
and 3000. In the definitions

Group {
Air = Region[1000]; Core = Region[2000]; Inductor = Region[3000];
NonConductingDomain = Region[{Air, Corel}];
ConductingDomain Region[{Inductor}];

}

Air, Core, Inductor are identifiers of elementary region groups while NonConductingDom
ain and ConductingDomain are global region groups.

Groups of function type contain lists of entities built on the region groups appearing in
their arguments. For example,

NodesOf [NonConductingDomain]
represents the group of nodes of geometrical elements belonging to the regions in NonConduc
tingDomain and

Edges0f [DomainC, Not SkinDomainC]

represents the group of edges of geometrical elements belonging to the regions in DomainC
but not to those of SkinDomainC.

7.3 Function examples

A physical characteristic is a piecewise defined function. The magnetic permeability mu[]
can for example be defined in the considered regions by
Function {
mul[Air] = 4.e-T7*Pi;
mu[Core] = 1000.%*4.e-7*Pi;
}

A nonlinear characteristic can be defined through an expression with arguments, e.g.,

76 GetDP 3.6.0 (development version)

Function {
mu0 = 4.e-7*Pi;
al = 1000.; bl = 100.; // Constants
mu[NonlinearCore] = muO + 1./(al+bil*Norm[$1]°6);
}

where function mu[] in region NonLinearCore has one argument $1 which has to be the
magnetic flux density. This function is actually called when writing the equations of a
formulation, which permits to directly extend it to a nonlinear form by adding only the
necessary arguments. For example, in a magnetic vector potential formulation, one may
write mu[{Curl a}] instead of mu[] in Equation terms (see Section 7.8 [Formulation ex-
amples|, page 83). Multiple arguments can be specified in a similar way: writing mu [{Curl
a},{T}] in an Equation term will provide the function mu[] with two usable arguments,
$1 (the magnetic flux density) and $2 (the temperature).

It is also possible to directly interpolate one-dimensional functions from tabulated data. In
the following example, the function f(x) as well as its derivative f’(x) are interpolated from
the (x,f(x)) couples (0,0.65), (1,0.72), (2,0.98) and (3,1.12):
Function {
couples = {0, 0.65 , 1, 0.72 , 2, 0.98 , 3, 1.12};
f[] = InterpolationLinear[$1]{List[couples]};
dfdx[] = dInterpolationLinear[$1]{List[couples]};
}

The function £ [] may then be called in an Equation term of a Formulation with one argu-
ment, x. Notice how the list of constants List [couples] is supplied as a list of parameters
to the built-in function InterpolationLinear (see Section 4.4 [Constants|, page 16, as well
as Section 4.6 [Functions|, page 22). In order to facilitate the construction of such interpo-
lations, the couples can also be specified in two separate lists, merged with the alternate
list ListAlt command (see Section 4.4 [Constants|, page 16):

Function {
data_x = {0, 1, 2, 3};
data_f = {0.65, 0.72, 0.98, 1.12};
f[] = InterpolationLinear[$1]{ListAlt[data_x, data_fl};
dfdx[] = dInterpolationLinear[$1]{ListAlt[data_x, data_f]l};
}

In order to optimize the evaluation time of complex expressions, registers may be used (see
Section 4.9 [Run-time variables and registers|, page 24). For example, the evaluation of g[]
= £[$1]1*Sin[f[$1] 2] would require two (costly) linear interpolations. But the result of
the evaluation of f[] may be stored in a register (for example the register 0) with

gl] = £[$11#0 * Sin[#0"°2];

thus reducing the number of evaluations of £ [] (and of the argument $1) to one.

The same results can be obtained using a run-time variable $v:
gll = ($v = £[$1]) * Sin[$v-2];
A function can also be time dependent, e.g.,

Function {
Freq = 50.; Phase = 30./180.%Pi; // Constants

Chapter 7: Short examples 7

TimeFct_Sin[] = Sin [2.*PixFreq * $Time + Phase];

TimeFct_Exp[] = Exp [- $Time / 0.0119 1;

TimeFct_ExtSin[] = Sin_wt_p [] {2.*Pi*Freq, Phasel};
}

Note that TimeFct_ExtSin[] is identical to TimeFct_Sin[] in a time domain analysis, but
also permits to define phasors implicitely in the case of harmonic analyses.

7.4 Constraint examples

Constraints are referred to in FunctionSpaces and are usually used for boundary conditions
(Assign type). For example, essential conditions on two surface regions, Surf0 and Surf1,
will be first defined by

Constraint {
{ Name DirichletBoundaryConditionl; Type Assign;
Case {
{ Region Surf0O; Value 0.; }
{ Region Surfl; Value 1.; }
}
}
}

The way the Values are associated with Regions (with their nodes, their edges, their global
regions, . . .) is defined in the FunctionSpaces which use the Constraint. In other words, a
Constraint defines data but does not define the method to process them. A time dependent
essential boundary condition on Surf1 would be introduced as (cf. Section 7.3 [Function
examples|, page 75 for the definition of TimeFct_Expl[]):

{ Region Surfl; Value 1.; TimeFunction 3*TimeFct_Exp[] }

It is important to notice that the time dependence cannot be introduced in the Value field,
since the Value is only evaluated once during the pre-processing.

Other constraints can be referred to in Formulations. It is the case of those defining
electrical circuit connections (Network type), e.g.,

Constraint {
{ Name ElectricalCircuit; Type Network;
Case Circuitl {
{ Region VoltageSource; Branch {1,2}; }
{ Region PrimaryCoil; Branch {1,2}; }
}
Case Circuit2 {
{ Region SecondaryCoil; Branch {1,2}; }
{ Region Charge; Branch {1,2}; }
}
}
}

which defines two non-connected circuits (Circuitl and Circuit2), with an independent
numbering of mnodes: region VoltageSource is connected in parallel with region
PrimaryCoil, and region SecondaryCoil is connected in parallel with region Charge.

78 GetDP 3.6.0 (development version)

7.5 FunctionSpace examples

Various discrete function spaces can be defined in the frame of the finite element method.

7.5.1 Nodal finite element spaces

The most elementary function space is the nodal finite element space, defined on a mesh of a
domain W and denoted SO(W) (associated finite elements can be of various geometries), and
associated with essential boundary conditions (Dirichlet conditions). It contains 0-forms,
i.e., scalar fields of potential type:

v = Z Vpsn v € SY(W)

nenN

where N is the set of nodes of W, sn is the nodal basis function associated with node n and
vn is the value of v at node n. It is defined by

FunctionSpace {
{ Name Hgrad_v; Type FormO;
BasisFunction {
{ Name sn; NameOfCoef vn; Function BF_Node;
Support Domain; Entity NodesOf [A11]; }
}
Constraint {
{ NameOfCoef vn; EntityType NodesOf;
NameOfConstraint DirichletBoundaryConditionl; }
}
}
}

Function sn is the built-in basis function BF_Node associated with all nodes (Nodes0f) in
the mesh of W (Domain). Previously defined Constraint DirichletBoundaryConditionl
(see Section 7.4 [Constraint examples], page 77) is used as boundary condition.

In the example above, Entity NodesOf [A11] is preferred to Entity NodesOf [Domain]. In
this way, the list of all the nodes of Domain will not have to be generated. All the nodes of
each geometrical element in Support Domain will be directly taken into account.

7.5.2 High order nodal finite element space

Higher order finite elements can be directly taken into account by BF_Node. Hierarchical
finite elements for O-forms can be used by simply adding other basis functions (associated
with other geometrical entities, e.g., edges and facets) to BasisFunction, e.g.,

BasisFunction {
{ Name sn; NameOfCoef vn; Function BF_Node;
Support Domain; Entity NodesOf [A11]; }
{ Name s2; NameOfCoef v2; Function BF_Node_2E;
Support Domain; Entity EdgesOf[A1l]; }

Chapter 7: Short examples 79

7.5.3 Nodal finite element space with floating potentials

A scalar potential with floating values vf on certain boundaries Gf, f in Cf, e.g., for elec-
trostatic problems, can be expressed as

v = Z UpSp, + Z vpsy v e SYW)

neN, feCy

where Nv is the set of inner nodes of W and each function sf is associated with the group
of nodes of boundary Gf, f in Cf (SkinDomainC); sf is the sum of the nodal basis functions
of all the nodes of Cf. Its function space is defined by

FunctionSpace {
{ Name Hgrad_v_floating; Type FormO;
BasisFunction {
{ Name sn; NameOfCoef vn; Function BF_Node;
Support Domain; Entity NodesOf [A1l, Not SkinDomainC]; 3}
{ Name sf; NameOfCoef vf; Function BF_GroupOfNodes;
Support Domain; Entity GroupsOfNodesOf [SkinDomainC]; }
}
GlobalQuantity {
{ Name GlobalElectricPotential; Type AliasOf; NameOfCoef vf; }
{ Name GlobalElectricCharge; Type AssociatedWith;
NameOfCoef vf; }
}
Constraint { ... }
}
}

Two global quantities have been associated with this space: the electric potential Global
ElectricPotential, being an alias of coefficient vf, and the electric charge GlobalElec
tricCharge, being associated with coefficient vf.

7.5.4 Edge finite element space

Another space is the edge finite element space, denoted S1(W), containing 1-forms, i.e.,
curl-conform fields:

h=> hs. heS (W)

ecl

where E is the set of edges of W, se is the edge basis function for edge e and he is the
circulation of h along edge e. It is defined by

FunctionSpace {
{ Name Hcurl_h; Type Formi;
BasisFunction {
{ Name se; NameOfCoef he; Function BF_Edge;
Support Domain; Entity EdgesOf[A1l]; }
}

Constraint { ... }

80 GetDP 3.6.0 (development version)

}
}

7.5.5 Edge finite element space with gauge condition

A 1-form function space containing vector potentials can be associated with a gauge con-
dition, which can be defined as a constraint, e.g., a zero value is fixed for all circulations
along edges of a tree (EdgesOfTreelIn) built in the mesh (Domain), having to be complete
on certain boundaries (StartingOn Surf):

Constraint {
{ Name GaugeCondition_a_Mag_3D; Type Assign;
Case {
{ Region Domain; SubRegion Surf; Value 0.; }
+
3
3

FunctionSpace {
{ Name Hcurl_a_Gauge; Type Formi;
BasisFunction {
{ Name se; NameOfCoef ae; Function BF_Edge;
Support Domain; Entity EdgesO0f[A11]; }
+
Constraint {
{ NameOfCoef ae;
EntityType EdgesOfTreeIln; EntitySubType StartingOn;
NameOfConstraint GaugeCondition_a_Mag 3D; }

}
3
3

7.5.6 Coupled edge and nodal finite element spaces

A 1-form function space, containing curl free fields in certain regions WeC (DomainCC) of W,
which are the complementary part of We (DomainC) in W, can be explicitly characterized
by

h= > Ilsp+ Y ¢uvn he S (W)

keE. neENS

where Ec is the set of inner edges of W, NcC is the set of nodes inside WcC' and on its
boundary dWcC, sk is an edge basis function and vn is a vector nodal function. Such a
space, coupling a vector field with a scalar potential, can be defined by

FunctionSpace {
{ Name Hcurl_hphi; Type Formil;
BasisFunction {
{ Name sk; NameOfCoef hk; Function BF_Edge;

Chapter 7: Short examples 81

Support DomainC; Entity EdgesOf[All, Not SkinDomainC]; }
{ Name vn; NameOfCoef phin; Function BF_GradNode;
Support DomainCC; Entity NodesOf [A11l]; }
{ Name vn; NameOfCoef phic; Function BF_GroupOfEdges;
Support DomainC; Entity GroupsOfEdgesOnNodesOf [SkinDomainC];3}
b
Constraint {
{ NameOfCoef hk;
EntityType Edges0f; NameOfConstraint MagneticField; }
{ NameOfCoef phin;
EntityType NodesOf; NameOfConstraint MagneticScalarPotential; }
{ Name0OfCoef phic;
EntityType NodesOf; NameOfConstraint MagneticScalarPotential; }
X
}
b

This example points out the definition of a piecewise defined basis function, e.g., function
vn being defined with BF_GradNode in DomainCC and BF_GroupOfEdges in DomainC. This
leads to an easy coupling between these regions.

7.5.7 Coupled edge and nodal finite element spaces for multiply
connected domains

In case a multiply connected domain WeC is considered, basis functions associated with cuts
(SurfaceCut) have to be added to the previous basis functions, which gives the function
space below:

Group {
_TransitionLayer_SkinDomainC_ =
ElementsOf [SkinDomainC, OnOneSideOf SurfaceCut];

FunctionSpace {
{ Name Hcurl_hphi; Type Forml;
BasisFunction {

. same as above

{ Name sc; NameOfCoef Ic; Function BF_GradGroupOfNodes;
Support ElementsOf [DomainCC, OnOneSideOf SurfaceCut];
Entity GroupsOfNodesOf [SurfaceCut]; 7

{ Name sc; NameOfCoef Icc; Function BF_GroupOfEdges;
Support DomainC;

Entity GroupsO0fEdgesOf
[SurfaceCut,
InSupport _TransitionLayer_SkinDomainC_]; }
b
GlobalQuantity {

82 GetDP 3.6.0 (development version)

{ Name I; Type AliasOf ; NameOfCoef Ic; }
{ Name U; Type AssociatedWith; NameOfCoef Ic; }
}

Constraint {
. same as above

{ NameOfCoef Ic;
EntityType GroupsOfNodesOf; NameOfConstraint Current; }
{ NameOfCoef Icc;
EntityType GroupsOfNodes0f; NameOfConstraint Current; }
{ NameQOfCoef U;
EntityType GroupsOfNodesOf; NameOfConstraint Voltage; }
X
}
b

Global quantities associated with the cuts, i.e., currents and voltages if h is the magnetic
field, have also been defined.

7.6 Jacobian examples

A simple Jacobian method is for volume transformations (of n-D regions in n-D geometries;
n=1,2or 3), e.g., in region Domain,

Jacobian {
{ Name Vol;
Case {
{ Region Domain; Jacobian Vol; }
}
}
}

Jacobian VolAxi would define a volume Jacobian for axisymmetrical problems.

A Jacobian method can also be piecewise defined, in DomainInf, where an infinite geomet-
rical transformation has to be made using two constant parameters (inner and outer radius
of a spherical shell), and in all the other regions (A11l, being the default); in each case, a
volume Jacobian is used. This method is defined by:

Jacobian {
{ Name Vo1l;
Case {
{ Region DomainInf; Jacobian VolSphShell {Val_Rint, Val_Rext}; }
{ Region All; Jacobian Vol; }
}
}
}

Chapter 7: Short examples 83

7.7 Integration examples

A commonly used numerical integration method is the Gauss integration, with a
number of integration points (NumberOfPoints) depending on geometrical element types
(GeoElement), i.e.

Integration {
{ Name Int_1;
Case { {Type Gauss;

Case { { GeoElement Triangle ; NumberOfPoints 4; }
{ GeoElement Quadrangle ; NumberOfPoints 4; }
{ GeoElement Tetrahedron; NumberOfPoints 4; }
{ GeoElement Hexahedron ; NumberOfPoints 6; }
{ GeoElement Prism ; NumberOfPoints 9; } }

}
}

The method above is valid for both 2D and 3D problems, for different kinds of elements.

7.8 Formulation examples

7.8.1 Electrostatic scalar potential formulation

An electrostatic formulation using an electric scalar potential v, i.e.

(egradv,gradv’)y =0 Vo' € S°(W)

is expressed by

Formulation {
{ Name Electrostatics_v; Type FemEquation;
Quantity {
{ Name v; Type Local; NameOfSpace Hgrad_v; }
}
Equation {
Integral { [epsr[] * Dof{Grad v} , {Grad v} 1;
In Domain; Jacobian Vol; Integration Int_1; }
+
}
}

The density of the Integral term is a copy of the symbolic form of the formulation, i.e.,
the product of a relative permittivity function epsr[] by a vector of degrees of freedom
(Dof{.}); the scalar product of this with the gradient of test function v results in a sym-
metrical matrix.

Note that another Quantity could be defined for test functions, e.g., vp defined by { Name
vp; Type Local; NameOfSpace Hgrad_v; }. However, its use would result in the computa-
tion of a full matrix and consequently in a loss of efficiency.

84 GetDP 3.6.0 (development version)

7.8.2 Electrostatic scalar potential formulation with floating
potentials and electric charges

An extension of the formulation above can be made to take floating potentials and electrical
charges into account (the latter being defined in FunctionSpace Hgrad_v_floating), i.e

Formulation {
{ Name Electrostatics_v_floating; Type FemEquation;
Quantity {
{ Name v; Type Local; NameOfSpace Hgrad_v_floating; }
{ Name V; Type Global;
NameOfSpace Hgrad_v_floating [GlobalElectricPotentiall; }
{ Name Q; Type Global;
NameOfSpace Hgrad_v_floating [GlobalElectricChargel; }
}
Equation {
Integral { [epsr[] * Dof{Grad v} , {Grad v} 1;
In Domain; Jacobian Vol; Integration Int_1; }
GlobalTerm { [- Dof{Q}/epsO , {V}]; In SkinDomainC; }
}
}
+

with the predefinition Function { epsO = 8.854187818e-12; }.

7.8.3 Magnetostatic 3D vector potential formulation

A magnetostatic 3D vector potential formulation

(vecurla,curla’)y = (js, ')y, Va' € SY(W), with gauge condition

with a source current density js in inductors Ws, is expressed by

Formulation {
{ Name Magnetostatics_a_3D; Type FemEquation;
Quantity {
{ Name a; Type Local; NameOfSpace Hcurl_a_Gauge;
}
Equation {
Integral { [nu[] * Dof{Curl a} , {Curl a}];
In Domain; Jacobian Vol; Integration Int_1; }
Integral { [- SourceCurrentDensity[] , {a}]1;
In DomainWithSourceCurrentDensity;
Jacobian Vol; Integration Int_1; }
}
}
}

Note that js is here given by a function SourceCurrentDensity[], but could also be given
by data computed from another problem, e.g., from an electrokinetic problem (coupling of
formulations) or from a fully fixed function space (constraints fixing the density, which is
usually more efficient in time domain analyses).

Chapter 7: Short examples 85

7.8.4 Magnetodynamic 3D or 2D magnetic field and magnetic
scalar potential formulation

A magnetodynamic 3D or 2D h-phi formulation, i.e., coupling the magnetic field h with a
magnetic scalar potential phi,

O,(ph,h)y + (peurlh, curlh)y, =0 Vh' € SY(W)

can be expressed by

Formulation {
{ Name Magnetodynamics_hphi; Type FemEquation;
Quantity {
{ Name h; Type Local; NameOfSpace Hcurl_hphi; }
}
Equation {
Integral { Dt [mu[] * Dof{h} , {h}];
In Domain; Jacobian Vol; Integration Int_1; }
Integral { [rhol[]l * Dof{Curl h} , {Curl h} 1;
In DomainC; Jacobian Vol; Integration Int_1; }
}
}
}

7.8.5 Nonlinearities, Mixed formulations, ...

In case nonlinear physical characteristics are considered, arguments are used for associated
functions, e.g., mu[{h}]. Several test functions can be considered in an Equation field.
Consequently, mixed formulations can be defined.

7.9 Resolution examples

7.9.1 Static resolution (electrostatic problem)

A static resolution, e.g., for the electrostatic formulation (see Section 7.8 [Formulation
examples|, page 83), can be defined by

Resolution {
{ Name Electrostatics_v;
System {
{ Name Sys_Ele; NameOfFormulation Electrostatics_v; }
}
Operation {
Generate[Sys_Ele]; Solve[Sys_Ele]; SaveSolution[Sys_Ele];
}
}
}

The generation (Generate) of the matrix of the system Sys_Ele will be made with the for-
mulation Electrostatics_v, followed by its solving (Solve) and the saving of the solution
(SaveSolution).

86 GetDP 3.6.0 (development version)

7.9.2 Frequency domain resolution (magnetodynamic problem)

A frequency domain resolution, e.g., for the magnetodynamic h-phi formulation (see
Section 7.8 [Formulation examples|, page 83), is given by

Resolution {
{ Name Magnetodynamics_hphi;
System {
{ Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi;
Frequency Freq; }
}
Operation {
Generate [Sys_Magl; Solve[Sys_Magl; SaveSolution[Sys_Mag];
}
}
}

preceded by the definition of constant Freq, e.g.,

Function {
Freq = 50.;
}

7.9.3 Time domain resolution (magnetodynamic problem)

A time domain resolution, e.g., for the same magnetodynamic h-phi formulation (see
Section 7.8 [Formulation examples|, page 83), is given by

Resolution {
{ Name Magnetodynamics_hphi_Time;
System {
{ Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi; }
}
Operation {
InitSolution[Sys_Mag]; SaveSolution[Sys_Mag];
TimeLoopTheta[Mag_TimeO, Mag_TimeMax, Mag DTime[], Mag_Thetal]] {
Generate[Sys_Magl; Solve[Sys_Mag]; SaveSolution[Sys_Mag];
}
}
}
}

If, e.g., the Resolution above is preceded by the constant and function definitions below

Function {
Tc = 10.e-3;
Mag_TimeO = 0.; Mag_TimeMax = 2.%Tc; Mag_DTime[] = Tc/20.;
Mag_Thetal] = 1./2.;

3

the performed time domain analysis will be a Crank-Nicolson scheme (theta-scheme with
Theta = 0.5) with initial time 0 ms, end time 20 ms and time step 1 ms.

Chapter 7: Short examples 87

7.9.4 Nonlinear time domain resolution (magnetodynamic
problem)

In case a nonlinear problem is solved, an iterative loop has to be defined in an appropriate
level of the recursive resolution operations, e.g., for the magnetodynamic problem above,

Operation {
InitSolution[Sys_Mag]; SaveSolution[Sys_Mag];
TimeLoopTheta[Mag_TimeO, Mag_TimeMax, Mag DTime[], Mag_Thetal[]l] {
IterativeLoop [NL_NbrMax, NL_Eps, NL_Relax] {
GenerateJac[Sys_Mag]; SolveJac[Sys_Mag];
}
SaveSolution[Sys_Mag];
}
}

preceded by constant definitions, e.g.,

Function {
NL_Eps = 1.e-4; NL_Relax = 1.; NL_NbrMax = 80;
}

7.9.5 Coupled formulations

A coupled problem, e.g., magnetodynamic (in frequency domain; Frequency Freq) - ther-
mal (in time domain) coupling, with temperature dependent characteristics (e.g., rho [{T}],
...), can be defined by:

Resolution {
{ Name MagnetoThermalCoupling_hphi_T;
System {
{ Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi;
Frequency Freq; 7}
{ Name Sys_The; NameOfFormulation Thermal_T; }
}
Operation {
InitSolution[Sys_Mag]; InitSolution[Sys_The];
IterativeLoop [NL_NbrMax, NL_Eps, NL_Relax] {
GenerateJac[Sys_Mag]l; SolveJac[Sys_Mag];
GenerateJac[Sys_The]; SolveJac[Sys_Thel;
}
SaveSolution[Sys_Magl; SaveSolution[Sys_The];
}
}
}

Two systems of equations, Sys_Mag and Sys_The, will be solved iteratively until convergence
(Criterion), using a relaxation factor (RelaxationFactor).

It can be seen through these examples that many resolutions can be linked or nested directly
by the user, which gives a great freedom for coupled problems.

88 GetDP 3.6.0 (development version)

7.10 PostProcessing examples

The quantities to be post-computed based on a solution of a resolution are defined,
e.g., for the electrostatic problem (see Section 7.8 [Formulation examples|, page 83;
see Section 7.9 [Resolution examples|, page 85), for the solution associated with the
formulation Electrostatics_v, by

PostProcessing {
{ Name EleSta_v; NameOfFormulation Electrostatics_v;
Quantity {
{ Name v; Value { Local { [{v}]; In Domain; } } }
{ Name e; Value { Local { [-{Grad v}]; In Domain; } } }
{ Name d; Value { Local { [-epsOxepsr[] *{Grad v}];
In Domain; } } }
}
}
}

The electric scalar potential v (v), the electric field e (e) and the electric flux density d (d)
can all be computed from the solution. They are all defined in the region Domain.

The quantities for the solution associated with the formulation Electrostatics_v_float
ing are defined by

PostProcessing {
{ Name EleSta_vf; NameOfFormulation Electrostatics_v_floating;
Quantity {

. same as above

{ Name Q; Value { Local { [{Q}]; In SkinDomainC; } } }
{ Name V; Value { Local { [{V}]; In SkinDomainC; } } }
}
}
}

which points out the way to define post-quantities based on global quantities.

7.11 PostOperation examples

The simplest post-processing operation is the generation of maps of local quantities, i.e.,
the display of the computed fields on the mesh. For example, using the PostProcessing
defined in Section 7.10 [PostProcessing examples]|, page 88, the maps of the electric scalar
potential and of the electric field on the elements of the region Domain are defined as:

PostOperation {
{ Name Map_v_e; NameOfPostProcessing EleSta_v ;
Operation {
Print [v, OnElementsOf Domain, File "map_v.pos"];
Print [e, OnElementsOf Domain, File "map_e.pos" 1;

3

Chapter 7: Short examples 89

}

It is also possible to display local quantities on sections of the mesh, here for example on
the plane containing the points (0,0,1), (1,0,1) and (0,1,1):
Print [v, OnSection { {0,0,1} {1,0,1} {0,1,1} }, File "sec_v.pos"];

Finally, local quantities can also be interpolated on another mesh than the one on which
they have been computed. Six types of grids can be specified for this interpolation: a single
point, a set of points evenly distributed on a line, a set of points evenly distributed on a
plane, a set of points evenly distributed in a box, a set of points defined by a parametric
equation, and a set of elements belonging to a different mesh than the original one:

Print [e, OnPoint {0,0,1} 1;

Print [e, OnLine { {0,0,1} {1,0,1} } {125} 1;

Print [e, OnPlane { {0,0,1} {1,0,1} {0,1,1} } {125, 75} 1;

Print [e, OnBox { {0,0,1} {1,0,1} {0,1,1} {0,0,2} } {125, 75, 85} 1;
Print [e, OnGrid {$A, $B, 1} { 0:1:1/125, 0:1:1/75, 0 } 1;

Print [e, OnGrid Domain2];

Many options can be used to modify the aspect of all these maps, as well as the default
behaviour of the Print commands. See Section 6.10 [Types for PostOperation|, page 68,
to get the list of all these options. For example, to obtain a map of the scalar potential at
the barycenters of the elements on the boundary of the region Domain, in a table oriented
format appended to an already existing file out.txt, the operation would be:

Print [v, OnElementsOf Domain, Depth O, Skin, Format Table,
File >> "out.txt"];

Global quantities, which are associated with regions (and not with the elements of the mesh
of these regions), are displayed thanks to the OnRegion operation. For example, the global
potential and charge on the region SkinDomainC can be displayed with:

PostOperation {
{ Name Val_V_Q; NameOfPostProcessing EleSta_vf ;
Operation {
Print [V, OnRegion SkinDomainC];
Print [Q, OnRegion SkinDomainC];
}

Chapter 8: Complete examples 91

8 Complete examples

This chapter presents complete examples that can be run “as is” with GetDP (see Chapter 3
[Running GetDP], page 11).

Many other ready-to-use examples are available on the website of the ONELAB project:
http://onelab.info.

8.1 Electrostatic problem

Let us first consider a simple electrostatic problem. The formulation used is an electric
scalar potential formulation (file ‘EleSta_v.pro’, including files ‘Jacobian_Lib.pro’ and
‘Integration_Lib.pro’). It is applied to a microstrip line (file ‘mStrip.pro’), whose geom-
etry is defined in the file ‘mStrip.geo’ (see Appendix B [Gmsh examples], page 115). The
geometry is two-dimensional and by symmetry only one half of the structure is modeled.

Surf _Inf
Air
Surf dn0
Line
Diell

Rﬁ“ﬂrnund

Note that the structure of the following files points out the separation of the data describing
the particular problem and the method used to solve it (see Section 1.1 [Numerical tools as
objects], page 5), and therefore how it is possible to build black boxes adapted to well defined
categories of problems. The files are commented (see Section 4.1 [Comments|, page 15) and
can be run without any modification.

File "mStrip.pro"

http://onelab.info

92 GetDP 3.6.0 (development version)

This file defines the problem dependent data structures for the
microstrip problem.

To compute the solution:
getdp mStrip -solve EleSta_v

To compute post-results:
getdp mStrip -pos Map
or getdp mStrip -pos Cut

Group {

/* Let’s start by defining the interface (i.e. elementary groups)
between the mesh file and GetDP (no mesh object is defined, so
the default mesh will be assumed to be in GMSH format and located
in "mStrip.msh") x*/

Air = Region[101]; Diell = Region[111];
Ground = Region[120]; Line = Region[121];
SurfInf = Region[130];

/* We can then define a global group (used in "EleSta_v.pro",
the file containing the function spaces and formulations) */

DomainCC_Ele = Region[{Air, Diell}];

Function {

/* The relative permittivity (needed in the formulation) is piecewise
defined in elementary groups */

epsr[Air] = 1.

epsr[Diell] 9.8;

Constraint {
/* Now, some Dirichlet conditions are defined. The name
’ElectricScalarPotential’ refers to the constraint name given in
the function space */

{ Name ElectricScalarPotential; Type Assign;
Case {

Chapter 8: Complete examples

{ Region Region[{Ground, SurfInfl}]; Value O.; }
{ Region Line; Value 1.e-3; }
}
}

/* The formulation used and its tools, considered as being
in a black box, can now be included */

Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "EleSta_v.pro"

/* Finally, we can define some operations to output results */
e =1.e-7;

PostOperation {
{ Name Map; NameOfPostProcessing EleSta_v;
Operation {
Print [v, OnElements0f DomainCC_Ele, File "mStrip_v.pos"];
Print [e, OnElementsOf DomainCC_Ele, File "mStrip_e.pos" 1];
}
}
{ Name Cut; NameOfPostProcessing EleSta_v;
Operation {
Print [e, OnLine {{e,e,0}{10.e-3,e,0}} {500}, File "Cut_e"];
}

File "EleSta_v.pro"

Electrostatics - Electric scalar potential v formulation

INPUT

Global Groups : (Extension ’_Ele’ is for Electric problem)
Domain_Ele Whole electric domain (not used)
DomainCC_Ele Nonconducting regions

DomainC_Ele Conducting regions (not used)

94 GetDP 3.6.0 (development version)

Function :

epsr[] Relative permittivity

ElectricScalarPotential Fixed electric scalar potential
(classical boundary condition)

Physical constants

epsO = 8.854187818e-12;

Group {
DefineGroup[Domain_Ele, DomainCC_Ele, DomainC_Ele];

¥

Function {
DefineFunction[epsr];

}

FunctionSpace {
{ Name Hgrad_v_Ele; Type FormO;
BasisFunction {
// v=v s , for all nodes
// n n
{ Name sn; NameOfCoef vn; Function BF_Node;
Support DomainCC_Ele; Entity NodesOf[A1l J]; %}
}
Constraint {
{ NameOfCoef vn; EntityType NodesOf;
NameOfConstraint ElectricScalarPotential; }

Formulation {
{ Name Electrostatics_v; Type FemEquation;
Quantity {
{ Name v; Type Local; NameOfSpace Hgrad_v_Ele; }
}
Equation {
Galerkin { [epsr[] * Dof{d v} , {d v}]; In DomainCC_Ele;
Jacobian Vol; Integration GradGrad; }

Chapter 8: Complete examples 95

Resolution {
{ Name EleSta_v;
System {
{ Name Sys_Ele; NameOfFormulation Electrostatics_v; }
}
Operation {
Generate[Sys_Ele]; Solve[Sys_Ele]; SaveSolution[Sys_Ele];
}
}
}

PostProcessing {
{ Name EleSta_v; NameOfFormulation Electrostatics_v;
Quantity {
{ Name v;
Value {
Local { [{v}]; In DomainCC_Ele; Jacobian Vol; }

{ Name e;
Value {
Local { [-{d v}]; In DomainCC_Ele; Jacobian Vol; }

{ Name d;

Value {
Local { [-epsO*epsr[] * {d v}]; In DomainCC_Ele;
Jacobian Vol; }

File "Jacobian_Lib.pro"

Definition of a jacobian method

96 GetDP 3.6.0 (development version)

GlobalGroup
DomainInf Regions with Spherical Shell Transformation
Parameters
Val_Rint, Val_Rext Inner and outer radius of the Spherical Shell
of DomainInf
*/
Group {

DefineGroup[DomainInf] ;
DefineVariable[Val_Rint, Val_Rext] ;
}

Jacobian {
{ Name Vol ;
Case { { Region DomainInf ;
Jacobian VolSphShell {Val_Rint, Val_Rext} ; }
{ Region All ; Jacobian Vol ; }

File "Integration_Lib.pro"
Definition of integration methods
Integration {

{ Name GradGrad ;
Case { {Type Gauss ;

Case { { GeoElement Triangle ; NumberOfPoints 4 ; }
{ GeoElement Quadrangle ; NumberOfPoints 4 ; }
{ GeoElement Tetrahedron ; NumberOfPoints 4 ; }
{ GeoElement Hexahedron ; NumberOfPoints 6 ; }
{ GeoElement Prism ; NumberOfPoints 9 ; } }
}
}
}
{ Name CurlCurl ;
Case { {Type Gauss ;
Case { { GeoElement Triangle ; NumberOfPoints 4 ; }

{ GeoElement Quadrangle ; NumberOfPoints 4 ; }

Chapter 8: Complete examples

{ GeoElement Tetrahedron ; NumberOfPoints
{ GeoElement Hexahedron ; NumberOfPoints
{ GeoElement Prism ; NumberOfPoints

4
6

9 .

I
’

b

}
.
}

}

97

98 GetDP 3.6.0 (development version)

8.2 Magnetostatic problem

We now consider a magnetostatic problem. The formulation used is a 2D magnetic vector
potential formulation (see file ‘MagSta_a_2D.pro’). It is applied to a core-inductor system
(file ‘CoreSta.pro’), whose geometry is defined in theh file ‘Core.geo’ (see Appendix B
[Gmsh examples|, page 115). The geometry is two-dimensional and, by symmetry, one
fourth of the structure is modeled.

SurfaceiEzIart
BirIaf /
Zur faceiGal
Ailr
a
5
o
- o
H

EEHSurfaceGhD

The jacobian and integration methods used are the same as for the electrostatic problem
presented in Section 8.1 [Electrostatic problem], page 91.
File "CoreSta.pro"

This file defines the problem dependent data structures for the
static core-inductor problem.

To compute the solution:
getdp CoreSta -msh Core.msh -solve MagSta_a_2D

To compute post-results:
getdp CoreSta -msh Core.msh -pos Map_a

Chapter 8: Complete examples

Air
Ind

Region[101]; Core
Region[103]; AirInf

Region[102];
Region[111 1;

SurfaceGhO = Region[1100]; SurfaceGe0O = Region[1101 1;
SurfaceGInf = Region[1102 1];

Val_Rint = 200.e-3;
Val_Rext 250.e-3;

DomainCC_Mag = Region[{Air, AirInf, Core, Ind} 1;
DomainC_Mag = Region[{}];

DomainS_Mag = Region[{Ind}]; // Stranded inductor
DomainInf Region[{AirInf}];

Domain_Mag Region[{DomainCC_Mag, DomainC_Mag}];

Function {

mu0 = 4.e-7 * Pi;
murCore = 100.;

nu [Region[{Air, Ind, AirInf}]] = 1. / muO;
nu [Core] = 1. / (murCore * muO);

Sc[Ind] = 2.5e-2 * 5.e-2;

Constraint {

{ Name MagneticVectorPotential_2D;
Case {
{ Region SurfaceGeO ; Value 0.; }
{ Region SurfaceGInf; Value 0.; }
}
}

Val_I_1_ = 0.01 * 1000.;

{ Name SourceCurrentDensityZ;
Case {
{ Region Ind; Value Val_I_1_/Sc[l; }
b
b

100 GetDP 3.6.0 (development version)

Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "MagSta_a_2D.pro"

e = 1.e-5;
pl = {e,e,0};
p2 = {0.12,e,0%};

PostOperation {

{ Name Map_a; NameOfPostProcessing MagSta_a_2D;
Operation {
Print[az, OnElements0f Domain_Mag, File "CoreSta_a.pos"];
Print[b, OnLine{{List[p1]1}{List[p2]1}} {1000}, File "k_a"];
b
X

File "MagSta_a_2D.pro"

Magnetostatics - Magnetic vector potential a formulation (2D)

INPUT

GlobalGroup : (Extension ’_Mag’ is for Magnetic problem)
;;;;;;:&;;_ Whole magnetic domain
DomainS_Mag Inductor regions (Source)
Function :

;;E;——-- Magnetic reluctivity

Constraint

MagneticVectorPotential 2D
Fixed magnetic vector potential (2D)
(classical boundary condition)
SourceCurrentDensityZ Fixed source current density (in Z direction)

Chapter 8: Complete examples 101

Group {
DefineGroup[Domain_Mag, DomainS_Mag];

¥

Function {
DefineFunction[nu];

}

FunctionSpace {

// Magnetic vector potential a (b = curl a)
{ Name Hcurl_a_Mag_2D; Type FormlP;
BasisFunction {
// a=a s
// e e
{ Name se; NameOfCoef ae; Function BF_PerpendicularEdge;
Support Domain_Mag; Entity NodesOf[All]; 1}
}
Constraint {
{ NameOfCoef ae; EntityType NodesOf;
NameOfConstraint MagneticVectorPotential_2D; }
}
}

// Source current density js (fully fixed space)
{ Name Hregion_j_Mag_2D; Type Vector;
BasisFunction {
{ Name sr; NameOfCoef jsr; Function BF_RegionZ;
Support DomainS_Mag; Entity DomainS_Mag; }
b
Constraint {
{ NameOfCoef jsr; EntityType Region;
NameOfConstraint SourceCurrentDensityZ; }

Formulation {
{ Name Magnetostatics_a_2D; Type FemEquation;

Quantity {
{ Name a ; Type Local; NameOfSpace Hcurl_a_Mag_2D; }
{ Name js; Type Local; NameOfSpace Hregion_j_Mag 2D; }

}

Equation {
Galerkin { [nu[] * Dof{d a} , {d a}]; In Domain_Mag;

Jacobian Vol; Integration CurlCurl; }

102 GetDP 3.6.0 (development version)

Galerkin { [- Dof{js} , {a}]; In DomainS_Mag;
Jacobian Vol; Integration CurlCurl; }

Resolution {
{ Name MagSta_a_2D;
System {
{ Name Sys_Mag; NameOfFormulation Magnetostatics_a_2D; }
}
Operation {
Generate[Sys_Magl; Solve[Sys_Magl; SaveSolution[Sys_Mag];
}
}
}

PostProcessing {
{ Name MagSta_a_2D; NameOfFormulation Magnetostatics_a_2D;
Quantity {
{ Name a;
Value {
Local { [{a}]; In Domain_Mag; Jacobian Vol; }
}

{ Name az;
Value {
Local { [CompZ[{a}]]; In Domain_Mag; Jacobian Vol; }
}

{ Name b;
Value {
Local { [{d a}]; In Domain_Mag; Jacobian Vol; }
}

{ Name h;
Value {
Local { [nul]l * {d a}]; In Domain_Mag; Jacobian Vol; }
}
}

Chapter 8: Complete examples 103

8.3 Magnetodynamic problem

As a third example we consider a magnetodynamic problem. The formulation is a two-
dimensional a-v formulation (see file ‘MagDyn_av_2D.pro’, which includes the same jacobian
and integration library files as in Section 8.1 [Electrostatic problem], page 91). It is applied
to a core-inductor system (defined in file ‘CoreMassive.pro’), whose geometry has already
been defined in file ‘Core.geo’.

File "CoreMassive.pro"

This file defines the problem dependent data structures for the
dynamic core-inductor problem.

To compute the solution:
getdp CoreMassive -msh Core.msh -solve MagDyn_av_2D

To compute post-results:
getdp CoreMassive -msh Core.msh -pos Map_a
getdp CoreMassive -msh Core.msh -pos U_av

——— *x/
Group |
Air = Region[101]; Core = Region[102];
Ind = Region[103]; AirInf = Region[111];
SurfaceGhO = Region[1100]; SurfaceGe0O = Region[1101 1;

SurfaceGInf = Region[1102];

Val_Rint =
Val_Rext

|
N
o
o

.e—3;
e-3;

]
N
n
o

DomainCC_Mag = Region[{Air, AirInf}];

DomainC_Mag = Region[{Ind, Core}]; // Massive inductor + conducting core
DomainB_Mag Region[{} 1;

DomainS_Mag Region[{} 1;

DomainInf Region[{AirInf}];

Domain_Mag Region[{DomainCC_Mag, DomainC_Mag}];

Function {

muO = 4.e-7 * Pi;

murCore = 100.;

104

nu [#{Air, Ind, AirInf}] = 1. / muO;
nu [Core] = 1. / (murCore * muO);
sigma [Ind] = 5.9e7;

sigma [Core] = 2.5e7;

Freq = 1.;

Constraint {

{ Name MagneticVectorPotential_2D;
Case {
{ Region SurfaceGeO ; Value 0.; }
{ Region SurfaceGInf; Value 0.; }
}
}

{ Name SourceCurrentDensityZ;
Case {
b

X

Val_I_ = 0.01 * 1000.;

{ Name Current_2D;
Case {
{ Region Ind; Value Val I_; }
}
}

{ Name Voltage_2D;
Case {
{ Region Core; Value 0.; }
}
}

Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "MagDyn_av_2D.pro"

PostOperation {

GetDP 3.6.0 (development version)

{ Name Map_a; NameOfPostProcessing MagDyn_av_2D;

Operation {

Chapter 8: Complete examples 105

Print[az, OnElementsOf Domain_Mag, File "Core_m_a.pos" 1;
Print[j, OnElementsOf Domain_Mag, File "Core_m_j.pos" 1;
}
}
{ Name U_av;
Operation {
Print[U, OnRegion Ind];
Print[I, OnRegion Ind];

NameOfPostProcessing MagDyn_av_2D;

File "MagDyn_av_2D.pro"

Magnetodynamics - Magnetic vector potential and electric scalar
potential a-v formulation (2D)

(Extension ’_Mag’ is for Magnetic problem)

Domain_Mag
DomainCC_Mag
DomainC_Mag
DomainS_Mag
DomainV_Mag

Function :

Velocityl[]

Constraint

Whole magnetic domain

Nonconducting regions (not used)
Conducting regions

Inductor regions (Source)

A1l regions in movement (for speed term)

Magnetic reluctivity
Electric conductivity

Velocity of regions

MagneticVectorPotential_ 2D

SourceCurrentDensityZ

Voltage_2D
Current_2D

Fixed magnetic vector potential (2D)
(classical boundary condition)
Fixed source current density (in Z direction)

Fixed voltage
Fixed Current

106 GetDP 3.6.0 (development version)

Parameters

Freq Frequency (Hz)

Parameters for time loop with theta scheme
Mag_TimeO, Mag_TimeMax, Mag_DTime
Initial time, Maximum time, Time step (s)
Mag_Theta Theta (e.g. 1. : Implicit Euler,
0.5 : Cranck Nicholson)
*/

Group {
DefineGroup[Domain_Mag, DomainCC_Mag, DomainC_Mag,
DomainS_Mag, DomainV_Mag 1];

Function {

DefineFunction[nu, sigma];

DefineFunction[Velocity 1;

DefineVariable[Freq 1;

DefineVariable[Mag_TimeO, Mag_TimeMax, Mag_DTime, Mag_Theta];
}

FunctionSpace {

// Magnetic vector potential a (b = curl a)
{ Name Hcurl_a_Mag 2D; Type FormiP;
BasisFunction {
// a=a s
// e e
{ Name se; NameOfCoef ae; Function BF_PerpendicularEdge;
Support Domain_Mag; Entity NodesOf[A1l]; }
}
Constraint {
{ NameOfCoef ae; EntityType NodesOf;
NameOfConstraint MagneticVectorPotential_2D; }
b
}

// Gradient of Electric scalar potential (2D)
{ Name Hregion_u_Mag_2D; Type FormlP;
BasisFunction {
{ Name sr; NameOfCoef ur; Function BF_RegionZ;
Support DomainC_Mag; Entity DomainC_Mag; }
}
GlobalQuantity {

Chapter 8: Complete examples

{ Name U; Type AliasOf ; NameOfCoef ur; }
{ Name I; Type AssociatedWith; NameOfCoef ur; }
}
Constraint {
{ NameOfCoef U; EntityType Region;
NameOfConstraint Voltage_2D; }
{ NameOfCoef I; EntityType Region;
NameOfConstraint Current_2D; }
}
}

// Source current density js (fully fixed space)
{ Name Hregion_j_Mag_2D; Type Vector;
BasisFunction {
{ Name sr; NameOfCoef jsr; Function BF_RegionZ;
Support DomainS_Mag; Entity DomainS_Mag; }
+
Constraint {
{ NameOfCoef jsr; EntityType Region;
NameOfConstraint SourceCurrentDensityZ; }

Formulation {
{ Name Magnetodynamics_av_2D; Type FemEquation;
Quantity {
{ Name a ; Type Local ; NameOfSpace Hcurl_a_Mag_2D; }
{ Name ur; Type Local ; NameOfSpace Hregion_u_Mag_2D; }

{ Name I ; Type Global; NameOfSpace Hregion_u_Mag_2D [I]; %}
{ Name U ; Type Global; NameOfSpace Hregion_u_Mag 2D [U]; }

{ Name js; Type Local ; NameOfSpace Hregion_j_Mag_2D; }
}
Equation {
Galerkin { [nu[] * Dof{d a} , {d a}]; In Domain_Mag;
Jacobian Vol; Integration CurlCurl; }

Galerkin { DtDof [sigma[] * Dof{a} , {a}]; In DomainC_Mag;

Jacobian Vol; Integration CurlCurl; }
Galerkin { [sigmal[] * Dof{ur} , {a}]; In DomainC_Mag;
Jacobian Vol; Integration CurlCurl; }

Galerkin { [- sigmal] * (Velocity[] *~ Dof{d al}) , {al} 1;

In DomainV_Mag;
Jacobian Vol; Integration CurlCurl; }

107

108 GetDP 3.6.0 (development version)

Galerkin { [- Dof{js} , {a}]; In DomainS_Mag;
Jacobian Vol;
Integration CurlCurl; }

Galerkin { DtDof [sigma[] * Dof{a} , {ur}]; In DomainC_Mag;
Jacobian Vol; Integration CurlCurl; }

Galerkin { [sigmal[] * Dof{ur} , {ur}]; In DomainC_Mag;
Jacobian Vol; Integration CurlCurl; }

GlobalTerm { [Dof{I} , {U}]; In DomainC_Mag; }

Resolution {
{ Name MagDyn_av_2D;
System {
{ Name Sys_Mag; NameOfFormulation Magnetodynamics_av_2D;
Type ComplexValue; Frequency Freq; 1}
+
Operation {
Generate[Sys_Mag]; Solve[Sys_Mag]l; SaveSolution[Sys_Mag];
}
}

{ Name MagDyn_t_av_2D;
System {
{ Name Sys_Mag; NameOfFormulation Magnetodynamics_av_2D; }
}
Operation {
InitSolution[Sys_Magl]; SaveSolution[Sys_Mag];
TimeLoopTheta[Mag_TimeO, Mag_TimeMax, Mag DTime, Mag_Theta] {
Generate [Sys_Magl; Solve[Sys_Magl; SaveSolution[Sys_Mag];
}
}
}

PostProcessing {
{ Name MagDyn_av_2D; NameOfFormulation Magnetodynamics_av_2D;
Quantity {
{ Name a;
Value {
Local { [{a}]; In Domain_Mag; Jacobian Vol; }

Chapter 8: Complete examples

-~

}

Name az;
Value {

Local { [CompZ[{a}]]; In Domain_Mag; Jacobian Vol; }
}

Name b;
Value {

Local { [{d a} 1; In Domain_Mag; Jacobian Vol; }
}

Name h;
Value {

Local { [nul]l * {d a}]; In Domain_Mag; Jacobian Vol; }
}

Name j;
Value {
Local { [- sigmal]*(Dt[{a}]+{ur})]; In DomainC_Mag;
Jacobian Vol; }
+

Name jz;
Value {
Local { [- sigma[]*CompZ[Dt[{a}]+{ur}]]; In DomainC_Mag;
Jacobian Vol; }
}

Name roj2;
Value {
Local { [sigmal[]l*SquNorm[Dt[{a}]+{ur}]]; In DomainC_Mag;
Jacobian Vol; }
}

Name U; Value { Local { [{U}]; In DomainC_Mag; } } }
Name I; Value { Local { [{I}]; In DomainC_Mag; } } }

109

Appendix A: File formats 111

Appendix A File formats

This chapter describes the file formats that cannot be modified by the user. The for-
mat of the problem definition structure is explained in Chapter 5 [Objects], page 29, and
Chapter 6 [Types for objects|, page 43. The format of the post-processing files is explained
in Section 6.10 [Types for PostOperation], page 68.

A.1 Input file format

The native mesh format read by GetDP is the mesh file format produced by Gmsh
(http://gmsh.info). In its “version 1” incarnation, an ‘msh’ file is divided into two
sections, defining the nodes and the elements in the mesh.

$NOD

number-of-nodes

node-number x-coord y-coord z-coord
$ENDNOD

$ELM

number-of-elements
elm-number elm-type elm-region unused number-of-nodes node-numbers

$ENDELM
All the syntactic variables stand for integers except x-coord, y-coord and z-coord which

stand for floating point values. The elm-type value defines the geometrical type for the
element:

elm-type:

1 Line (2 nodes, 1 edge).

2 Triangle (3 nodes, 3 edges).

3 Quadrangle (4 nodes, 4 edges).

4 Tetrahedron (4 nodes, 6 edges, 4 facets).
5 Hexahedron (8 nodes, 12 edges, 6 facets).
6 Prism (6 nodes, 9 edges, 5 facets).

7 Pyramid (5 nodes, 8 edges, 5 facets).

15 Point (1 node).

GetDP can also read more recent versions of the ‘msh’ format (2.0 and above), as well as
binary meshes. See the Gmsh documentation for more information about these formats.

A.2 Output file format

http://gmsh.info

112

A.2
The

GetDP 3.6.0 (development version)

.1 File ¢.pre’

‘.pre’ file is generated by the pre-processing stage. It contains all the information about

the degrees of freedom to be considered during the processing stage for a given resolution

(i.e.,

unknowns, fixed values, initial values, etc.).

$Resolution /* ’resolution-id’ */

main-resolution-number number-of-dofdata

$EndResolution

$DofData /* #dofdata-number */

resolution-number system—-number

number-of-function-spaces function-space-number
number-of-time-functions time-function-number

number-of-partitions partition-index

number-of-any-dof number-of-dof

dof-basis-function-number dof-entity dof-harmonic dof-type dof-data

$EndDofData

with
dof-data:
equation-number nnz
(dof-type: 1; unknown) |
dof-value dof-time-function-number
(dof-type: 2; fixed value) |
dof-associate-dof-number dof-value dof-time-function-number
(dof-type: 3; associated degree of freedom) |
equation-number dof-value
(dof-type: 5; initial value for an unknown)
Notes:
1. There is one $DofData field for each system of equations considered in the resolution

D.

(including those considered in pre-resolutions).

The dofdata-number of a $DofData field is determined by the order of this field in the
‘.pre’ file.

number-of-dof is the dimension of the considered system of equations, while number-of-
any-dof is the total number of degrees of freedom before the application of constraints.

Each degree of freedom is coded with three integer values, which are the associated basis
function, entity and harmonic numbers, i.e., dof-basis-function-number, dof-entity and
dof-harmonic.

nnz is not used at the moment.

A.2.2 File ¢.res’

The

‘.res’ file is generated by the processing stage. It contains the solution of the problem

(or a part of it in case of program interruption).

$ResFormat /* GetDP vgetdp-version-number, string-for-format */

Appendix A: File formats 113

1.1 file-res—-format

$EndResFormat

$Solution /* DofData #dofdata-number */

dofdata-number time-value time-imag-value time-step-number
solution-value

$EndSolution

Notes:
1. A $Solution field contains the solution associated with a $DofData field.

2. There is one $Solution field for each time step, of which the time is time-value (0 for
non time dependent or non modal analyses) and the imaginary time is time-imag-value
(0 for non time dependent or non modal analyses).

3. The order of the solution-values in a $Solution field follows the numbering of the
equations given in the ‘.pre’ file (one floating point value for each degree of freedom).

Appendix B: Gmsh examples 115

Appendix B Gmsh examples

Gmsh is a three-dimensional finite element mesh generator with simple CAD and post-
processing capabilities that can be used as a graphical front-end for GetDP. Gmsh can be
downloaded from http://gmsh.info.

This appendix reproduces verbatim the input files needed by Gmsh to produce the mesh
files ‘mStrip.msh’ and ‘Core.msh’ used in the examples of Chapter 8 [Complete examples],
page 91.

File "mStrip.geo"

This file is the geometrical description used by GMSH to produce
the file "mStrip.msh".

/* Definition of some parameters for geometrical dimensions, i.e.
h (height of ’Diell’), w (width of ’Line’), t (thickness of ’Line’)
xBox (width of the air box) and yBox (height of the air box) */

4.72e-3 ; t = 0.035e-3 ;

h=1.e ;W=
* 6. ; yBox =h x 12. ;

-3
xBox = w/2.
/* Definition of parameters for local mesh dimensions */
s =1. ;
pO = h / 10. * s ;
pLine0 = w/2. / 10. * s ; pLinel = w/2. / 50. * s ;
pxBox = xBox / 10. * s ; pyBox = yBox / 8. * s ;

/* Definition of gemetrical points */

Point(1) = {0 , 0, 0, pO} ;
Point(2) = { xBox, 0, 0, pxBox} ;
Point(3) = { xBox, h, 0, pxBox} ;
Point(4) = { 0 , h, O, pLineO} ;
Point(5) = { w/2., h, 0, pLinel} ;
Point(6) = { O , h+t, O, pLineO} ;
Point(7) = { w/2., h+t, 0, pLinel} ;
Point(8) = { 0O , yBox, O, pyBox} ;
Point(9) = { xBox, yBox, 0, pyBox} ;

/* Definition of gemetrical lines */

Line(1) = {1,2}; Line(2) = {2,3}; Line(3) = {3,9};
Line(4) {9,8}; Line(5) {8,6}; Line(7) = {4,1};
Line(8) {5,3}; Line(9) {4,5}; Line(10) = {6,7};

http://gmsh.info

116 GetDP 3.6.0 (development version)

Line(11) = {5,7};

/* Definition of geometrical surfaces */

Line Loop(12)
Line Loop(14)

{12%};

{8,-2,-1,-7,9}; Plane Surface(13)
3 {14};

9
{10,-11,8,3,4,5}; Plane Surface(15)

/* Definition of Physical entities (surfaces, lines). The Physical
entities tell GMSH the elements and their associated region numbers
to save in the file ’mStrip.msh’. For example, the Region
111 is made of elements of surface 13, while the Region 121 is
made of elements of lines 9, 10 and 11 */

Physical Surface (101) = {15} ; /x Air =/
Physical Surface (111) = {13} ; /* Diell */
Physical Line (120) = {1} ; /* Ground */
Physical Line (121) = {9,10,11} ; /* Line */
Physical Line (130) = {2,3,4} ; /* SurfInf */

File "Core.geo"

This file is the geometrical description used by GMSH to produce
the file "Core.msh".

——— *x/
dxCore = ©50.e-3; dyCore = 100.e-3;
xInd = 75.e-3; dxInd = 25.e-3; dyInd = 50.e-3;
rint = 200.e-3; rExt = 250.e-3;
s = 1.;
pO = 12.e-3 *s;
pCorex = 4.e-3 *s; pCorey0 = 8.e-3 *s; pCorey = 4.e-3 *s;
pIndx = b5.e-3 *s; pIndy = 5.e-3 *s;
pInt = 12.5e-3*s; pExt = 12.5e-3%*s;
Point (1) = {0,0,0,p0};
Point(2) = {dxCore,0,0,pCorex};
Point(3) = {dxCore,dyCore,0,pCorey};
Point(4) = {0,dyCore,0,pCorey0};
Point(5) = {xInd,0,0,pIndx};
Point(6) = {xInd+dxInd,0,0,pIndx};
Point(7) = {xInd+dxInd,dyInd,0,pIndyl};
Point(8) = {xInd,dyInd,0,pIndy};
Point(9) = {rInt,0,0,pInt};

Point(10) = {rExt,0,0,pExt};

Appendix B: Gmsh examples

Point (11)
Point (12)

{0,rInt,0,pInt};
{0,rExt,0,pExt};

Line(1)
Line(4) = {6,9};
Line(7) = {4,11};
Line(10) = {3,4};
Line(13) = {8,5%};

{1,2}; Line(2)
Line(5)

Line(8)

= {2,5};

Circle(14) = {9,1,11}; Circle(15)

Line Loop(16)
Line Loop(18)
Line Loop(20)
Line Loop(22)

{-6,1,9,10};
{11,12,13,3};

{8,-15,-5,14%};

Physical Surface(101) = {21}; /*
Physical Surface(102) = {17}; /*
Physical Surface(103) = {19}; /x
Physical Surface(111) = {23}; /x
Physical Line(1000) = {1,2};
Physical Line(1001) = {2};
Physical Line(202) = {9,10};
Physical Line(203) = {11,12,13};
Physical Line(1100) = {1,2,3,4,5};
Physical Line(1101) = {6,7,8%};
Physical Line(1102) = {15};

{9,10};
{11,12%};
Line(11) = {6,7};

{7,-14,-4,11,12,13,-2,9,10}; Plane

117

Line(3) = {5,6};
Line(6) = {1,4};
Line(9) = {2,3};

Line(12) = {7,8};

{10,1,12};

Surface(17)
Surface (19)
Surface(21)
Surface(23)

{16};
{18};
{20%};
{22};

Plane
Plane

Plane

Air x/

Cor

e x/

Ind */

Air

/*
/*
/*
/*
/*
/*
/%

Inf */

Cut */

CutAir */
SkinCore */
SkinInd */
SurfaceGhO */
SurfaceGeO */
SurfaceGInf */

Appendix C: Compiling the source code 119

Appendix C Compiling the source code

Stable releases and source snapshots are available from http://getdp.info/src/. You can
also access the Git repository directly:

1. The first time you want to download the latest full source, type:
git clone http://gitlab.onelab.info/getdp/getdp.git
2. To update your local version to the latest and greatest, go in the getdp directory and
type:
git pull
Once you have the source code, you need to run CMake to configure your build (see the

README.txt file in the top-level source directory for detailed information on how to run
CMake).

Each build can be configured using a series of options, to selectively enable optional modules
or features. Here is the list of CMake options:

ENABLE_ARPACK
Enable Arpack eigensolver (requires Fortran) (default: ON)

ENABLE_BLAS_LAPACK
Enable BLAS/Lapack for linear algebra (e.g. for Arpack) (default: ON)

ENABLE_BUILD_LIB
Enable ’lib’ target for building static GetDP library (default: OFF)

ENABLE_BUILD_SHARED
Enable ’shared’ target for building shared GetDP library (default: OFF)

ENABLE_BUILD_DYNAMIC
Enable dynamic GetDP executable (linked with shared lib) (default: OFF)

ENABLE_BUILD_ANDROID
Enable Android NDK library target (experimental) (default: OFF)

ENABLE_BUILD_IOS
Enable iOS (ARM) library target (experimental) (default: OFF)

ENABLE_FORTRAN
Enable Fortran (needed for Arpack/Sparskit/Zitsol & Bessel) (default: ON)

ENABLE_GMSH
Enable Gmsh functions (for field interpolation) (default: ON)

ENABLE_GSL
Enable GSL functions (for some built-in functions) (default: ON)

ENABLE_KERNEL
Enable kernel (required for actual computations) (default: ON)

ENABLE_MMA
Enable MMA optimizer (default: ON)

ENABLE_MPI
Enable MPI parallelization (with PETSc/SLEPc) (default: OFF)

http://getdp.info/src/
http://gitlab.onelab.info/getdp/getdp.git
http://gitlab.onelab.info/getdp/getdp/tree/master/README.txt

120 GetDP 3.6.0 (development version)

ENABLE_MULTIHARMONIC
Enable multi-harmonic support (default: OFF)

ENABLE_NR
Enable NR functions (if GSL is unavailable) (default: ON)

ENABLE_NX
Enable proprietary NX extension (default: OFF)

ENABLE_OCTAVE
Enable Octave functions (default: OFF)

ENABLE_OPENMP
Enable OpenMP parallelization of some functions (experimental) (default:
OFF)

ENABLE_PETSC
Enable PETSc linear solver (default: ON)

ENABLE_PRIVATE_API
Enable private API (default: OFF)

ENABLE_PYTHON
Enable Python functions (default: ON)

ENABLE_SLEPC
Enable SLEPc eigensolver (default: ON)

ENABLE_SMALLFEM
Enable experimental SmallFem assembler (default: OFF)

ENABLE_SPARSKIT
Enable Sparskit solver instead of PETSc (requires Fortran) (default: ON)

ENABLE_SYSTEM_CONTRIB
Use system versions of contrib libraries, when possible (default: OFF)

ENABLE_PEWE
Enable PeWe exact solutions (requires Fortran) (default: ON)

ENABLE_WRAP_PYTHON
Build Python wrappers (default: OFF)

ENABLE_ZITSOL
Enable Zitsol solvers (requires PETSc and Fortran) (default: OFF)

Appendix D: Frequently asked questions 121

Appendix D Frequently asked questions

D.1 The basics

1.

What is GetDP?

GetDP is a scientific software environment for the numerical solution of integro-
differential equations, open to the coupling of physical problems (electromagnetic,
thermal, mechanical, etc) as well as of numerical methods (finite element method,
integral methods, etc). It can deal with such problems of various dimensions (1D, 2D,
2D axisymmetric or 3D) and time states (static, transient or harmonic). The main
feature of GetDP is the closeness between the organization of data defining discrete
problems (written by the user in ASCII data files) and the symbolic mathematical
expressions of these problems.

What are the terms and conditions of use?

GetDP is distributed under the terms of the GNU General Public License. See
Appendix H [License|, page 133 for more information.

What does ‘GetDP’ mean?
It’s an acronym for a “General environment for the treatment of Discrete Problems”.
Where can I find more information?

http://getdp.info is the primary location to obtain information about GetDP. There
you will for example find the complete reference manual and the bug tracking database.

D.2 Installation

1. Which OSes does GetDP run on?
Gmsh runs on Windows, MacOS X, Linux and most Unix variants.

2. What do I need to compile GetDP from the sources?
You need a C++ and a Fortran compiler as well as the GSL (version 1.2 or higher; freely
available from http://sources.redhat.com/gsl).

3. How do I compile GetDP?
You need cmake (http://www.cmake.org) and a C++ compiler (and a Fortran compiler
depending on the modules/solvers you want to compile). See Appendix C [Compiling
the source code], page 119 and the README.txt file in the top-level source directory
for more information.

4. GetDP [from a binary distribution| complains about missing libraries.
Try 1dd getdp (or otool -L getdp on MacOS X) to check if all the required shared
libraries are installed on your system. If not, install them. If it still doesn’t work,
recompile GetDP from the sources.

D.3 Usage
1. How can I provide a mesh to GetDP?

The only meshing format accepted by this version of GetDP is the ‘msh’ format created
by Gmsh http://gmsh.info. This format being very simple (see the Gmsh reference

http://getdp.info
https://gitlab.onelab.info/getdp/getdp/issues
http://sources.redhat.com/gsl
http://www.cmake.org
http://gitlab.onelab.info/getdp/getdp/tree/master/README.txt
http://gmsh.info

122

GetDP 3.6.0 (development version)

manual for more details), it should be straightforward to write a converter from your
mesh format to the ‘msh’ format.

How can I visualize the results produced by GetDP?

You can specify a format in all post-processing operations. Available formats include
Table, SimpleTable, TimeTable and Gmsh. Table, SimpleTable and TimeTable out-
put lists of numbers easily readable by Excel/gnuplot/Caleida Graph/etc. Gmsh outputs
post-processing views directly loadable by Gmsh.

How do I change the linear solver used by GetDP?

It depends on which linear solver toolkit was enabled when GetDP was compiled
(PETSc or Sparskit).

With PETSc-based linear solvers you can either specify options on the command line
(e.g. with -ksp_type gmres -pc_type ilu), through a specific option file (with -
solver file), through the ‘.petscrc’ file located in your home directly, or directly in
the Resolution field using the SetGlobalSolverOptions[] command.

With Sparskit-based linear solvers can either specify options directly on command line
(e.g. with -Nb_Fill 200), specify an option file explicitly (with -solver file), or edit
the ‘solver.par’ file in the current working directory. If no ‘solver.par’ file exists
in the current directory, GetDP will give create it the next time you perform a linear
system solution.

Appendix E: Tips and tricks 123

Appendix E Tips and tricks

e Install the ’info’ version of this user’s guide! On your (Unix) system, this can be
achieved by 1) copying all getdp.info* files to the place where your info files live (usually
/usr/info), and 2) issuing the command ’install-info /usr/info/getdp.info /usr/info/dir’.
You will then be able to access the documentation with the command ’info getdp’. Note
that particular sections ("nodes") can be accessed directly. For example, ’info getdp
functionspace’ will take you directly to the definition of the FunctionSpace object.

e Use emacs to edit your files, and load the C++ mode! This permits automatic syntax
highlighting and easy indentation. Automatic loading of the C++ mode for ‘. pro’ files
can be achieved by adding the following command in your .emacs file: (setq auto-
mode-alist (append ’ (("\\.pro$" . c++-mode)) auto-mode-alist)).

e Define integration and Jacobian method in separate files, reusable in all your prob-
lem definition structures (see Section 4.2 [Includes], page 15). Define meshes, groups,
functions and constraints in one file dependent of the geometrical model, and func-
tion spaces, formulations, resolutions and post-processings in files independent of the
geometrical model.

e Use All as soon as possible in the definition of topological entities used as Entity
of BasisFunctions. This will prevent GetDP from constructing unnecessary lists of
entities.

e Intentionally misspelling an object type in the problem definition structure will produce
an error message listing all available types in the particular context.

e If you don’t specify the mandatory arguments on the command line, GetDP will give
you the available choices. For example, ’getdp test -pos’ (the name of the PostOperation
is missing) will produce an error message listing all available PostOperations.

Appendix F: Version history 125

Appendix F Version history

3.6.0 (Work-in-progress): new functions ValueFromFile and ReadTable; improved
support for high-order meshes; improved parsing speed of .pro files with many
functions and groups; new -sparsity option to use exact sparsity pattern for
PETSc matrices; bug fixes (SaveMesh, adaptive time stepping with MPI, duplicate
values in ONELAB parameter choices).

3.5.0 (May 13, 2022): generalized Trace operator on non-conforming meshes; new
Errf function; source code reorganization.

3.4.0 (September 23, 2021): new Min and Max functions on constants (at parse
time); fixed regression in trees of edges in 2D; added support for non-ASCII
paths on command line on Windows; GetDP now requires C++11 and CMake 3.3; small
bug fixes.

3.3.0 (December 21, 2019): improved support for curved elements; added support
for auto-similar trees of edges (e.g. for sliding surfaces in 3D); update for
latest Gmsh version.

3.2.0 (July 1, 2019): improved node and edge link constraints search using
rtree; added support for BF_Edge basis functions on curved elements; small
fixes.

3.1.0 (April 19, 2019): added support for high-order (curved) Lagrange elements
(P2, P3 and P4); added support for latest Gmsh version; code refactoring.

3.0.4 (December 9, 2018): allow general groups in Jacobian definitions; fixed
string parser regression.

3.0.3 (October 18, 2018): new AtGaussPoint PostOperation option; bug fixes.
3.0.2 (September 10, 2018): small compilation fixes.

3.0.1 (September 7, 2018): small bug fixes.

3.0.0 (August 22, 2018): new extrapolation (see SetExtrapolationOrder) in
time-domain resolutions; new string macros; added support for Gmsh MSH4 file
format; new file handling operations and ElementTable format in PostOperation;
added support for curved (2nd order) simplices; enhanced communication of
post-processing data with ONELAB; many new functions (Atanh, JnSph, YnSph,

ValueFromTable, ListFromServer, GroupExists, ...); various small bug fixes.

2.11.3 (November 5, 2017): new ’Eig’ operator for general eigenvalue problems
(polynomial, rational); small improvements and bug fixes.

2.11.2 (June 23, 2017): minor build system changes.

126 GetDP 3.6.0 (development version)

2.11.1 (May 13, 2017): small bug fixes and improvements.

2.11.0 (January 3, 2017): small improvements (complex math functions, mutual
terms, one side of, get/save runtime variables) and bug fixes.

2.10.0 (October 9, 2016): ONELAB 1.3 with usability and performance
improvements.

2.9.2 (August 21, 2016): small bug fixes.

2.9.1 (August 18, 2016): small improvements (CopySolution[], -cpu) and bug
fixes.

2.9.0 (July 11, 2016): new ONELAB 1.2 protocol with native support for lists;

simple C++ and Python API for exchanging (lists of) numbers and strings;

extended .pro language for the construction of extensible problem definitions

("Append"); new VolCylShell transformation; new functions (Min, Max, SetDTime,
.); small fixes.

2.8.0 (March 5, 2016): new Parse[], {Set,Get}{Number,String}[] and
OnPositiveSideOf commands; added support for lists of strings; various
improvements and bug fixes for better interactive use with ONELAB.

2.7.0 (November 7, 2015): new Else/ElseIf commands; new timing and memory
reporting functions.

2.6.1 (July 30, 2015): enhanced Print[] command; minor fixes.

2.6.0 (July 21, 2015): new ability to define and use Macros in .pro files; new
run-time variables (act as registers, but with user-defined names starting with
’$’) and run-time ONELAB Get/Set functions; new Append*ToFileName PostOperation
options; new GetResdidual and associated operations; fixes and extended format
support in MSH file reader; fixed UpdateConstraint for complex-simulated-real
and multi-harmonic calculations.

2.5.1 (April 18, 2015): enhanced Python[] and DefineFunction[].

2.5.0 (March 12, 2015): added option to embed Octave and Python interpreters;
extended "Field" functions with gradient; extended string and list handling
functions; new resolution and postprocessing functions (RenameFile, While, ...);
extended EigenSolve with eigenvalue filter and high order polynomial EV
problems; small bug fixes.

2.4.4 (July 9, 2014): better stability, updated onelab API version and inline
parameter definitions, fixed UpdateConstraint in harmonic case, improved
performance of multi-harmonic assembly, fixed memory leak in parallel MPI

Appendix F: Version history 127

version, improved EigenSolve (quadratic EVP with SLEPC, EVP on real matrices),
new CosineTransform, MPI_Printf, SendMergeFileRequest parser commands, small
improvements and bug fixes.

2.4.3 (February 7, 2014): new mandatory ’Name’ attribute to define onelab
variables in DefineConstant[] & co; minor bug fixes.

2.4.2 (Septembre 27, 2013): fixed function arguments in nested expressions;
minor improvements.

2.4.1 (July 16, 2013): minor improvements and bug fixes.

2.4.0 (July 9, 2013): new two-step Init constraints; faster network computation
(with new -cache); improved Update operation; better cpu/memory reporting; new

-setnumber, -setstring and -gmshread command line options; accept unicode file

paths on Windows; small bug fixes.

2.3.1 (May 11, 2013): updated onelab; small bug fixes.

2.3.0 (March 9, 2013): moved build system from autoconf to cmake; new family of
Field functions to use data imported from Gmsh; improved list handling; general
code cleanup.

2.2.1 (July 15, 2012): cleaned up nonlinear convergence tests and integrated
experimental adaptive time loop code; small bug fixes.

2.2.0 (June 19, 2012): new solver interface based on ONELAB; parallel SLEPC
eigensolvers; cleaned up syntax for groups, moving band and global basis
functions; new Field[] functions to interpolate post-processing datasets from
Gmsh; fixed bug in Sur/Lin transformation of 2 forms; fixed bug for periodic
constraints on high-order edge elements.

2.1.1 (April 12, 2011): default direct solver using MUMPS.

2.1.0 (October 24, 2010): parallel resolution using PETSc solvers; new Gmsh2
output format; new experimental SLEPc-based eigensolvers; various bug and
performance fixes (missing face basis functions, slow PETSc assembly with global
quantities, ...)

2.0.0 (March 16, 2010): general code cleanup (separated interface from kernel
code; removed various undocumented, unstable and otherwise experimental
features; moved to C++); updated input file formats; default solvers are now
based on PETSc; small bug fixes (binary .res read, Newmark -restart).

1.2.1 (March 18, 2006): Small fixes.

1.2.0 (March 10, 2006): Windows versions do not depend on Cygwin anymore; major

128 GetDP 3.6.0 (development version)

parser cleanup (loops & co).
1.1.2 (September 3, 2005): Small fixes.

1.1.0 (August 21, 2005): New eigensolver based on Arpack (EigenSolve);
generalized old Lanczos solver to work with GSL+lapack; reworked PETSc
interface, which now requires PETSc 2.3; documented many previously undocumented
features (loops, conditionals, strings, link constraints, etc.); various
improvements and bug fixes.

1.0.1 (February 6, 2005): Small fixes.

1.0.0 (April 24, 2004): New license (GNU GPL); added support for latest Gmsh
mesh file format; more code cleanups.

0.91: Merged moving band and multi-harmonic code; new loops and conditionals in
the parser; removed old readline code (just use GNU readline if available);
upgraded to latest Gmsh post-processing format; various small enhancements and
bug fixes.

0.89 (March 26, 2003): Code cleanup.
0.88: Integrated FMM code.

0.87: Fixed major performance problem on Windows (matrix assembly and
post-processing can be up to 3-4 times faster with 0.87 compared to 0.86,
bringing performance much closer to Unix versions); fixed stack overflow on Mac
0S X; Re-introduced face basis functions mistakenly removed in 0.86; fixed
post-processing bug with pyramidal basis functions; new build system based on
autoconf.

0.86 (January 25, 2003): Updated Gmsh output format; many small bug fixes.

0.85 (January 21, 2002): Upgraded communication interface with Gmsh; new
ChangeOfValues option in PostOperation; many internal changes.

0.84 (September 6, 2001): New ChangeOfCoordinate option in PostOperation; fixed
crash in InterpolationAkima; improved interactive postprocessing (-ipos);
changed syntax of parametric OnGrid ($S, $T -> $A, $B, $C); corrected Skin for
non simplicial meshes; fixed floating point exception in diagonal matrix
scaling; many other small fixes and cleanups.

0.83: Fixed bugs in SaveSolutions[] and InitSolution[]; fixed corrupted binary
post-processing files in the harmonic case for the Gmsh format; output files are
now created relatively to the input file directory; made solver options
available on the command line; added optional matrix scaling and changed default
parameter file name to ’solver.par’ (Warning: please check the scaling

Appendix F: Version history 129

definition in your old SOLVER.PAR files); generalized syntax for lists
(start:[incr]lend -> start:end:incr); updated reference guide; added a new short
presentation on the web site; OnCut -> OnSection; new functional syntax for
resolution operations (e.g. Generate X -> Generate[X]); many other small fixes
and cleanups.

0.82: Added communication socket for interactive use with Gmsh; corrected
(again) memory problem (leak + seg. fault) in time stepping schemes; corrected
bug in Updatel[].

0.81: Generalization of transformation jacobians (spherical and rectangular,
with optional parameters); changed handling of missing command line arguments;
enhanced Print OnCut; fixed memory leak for time domain analysis of coupled
problems; -name option; fixed seg. fault in ILUK.

0.80: Fixed computation of time derivatives on first time step (in
post-processing); added tolerance in transformation jacobians; fixed parsing of
DOS files (carriage return problems); automatic memory reallocation in

ILUD/ILUK.

0.79: Various bug fixes (mainly for the post-processing of intergal quantities);
automatic treatment of degenerated cases in axisymmetrical problems.

0.78: Various bug fixes.
0.77: Changed syntax for PostOperations (Plot suppressed in favour of Print;
Plot OnRegion becomes Print OnElementsOf); changed table oriented

post-processing formats; new binary formats; new error diagnostics.

0.76: Reorganized high order shape functions; optimization of the
post-processing (faster and less bloated); lots of internal cleanups.

0.74: High order shape functions; lots of small bug fixes.
0.73: Eigen value problems (Lanczos); minor corrections.

0.7: constraint syntax; fourier transform; unary minus correction; complex
integral quantity correction; separate iteration matrix generation.

0.6: Second order time derivatives; Newton nonlinear scheme; Newmark time
stepping scheme; global quantity syntax; interactive post-processing; tensors;

integral quantities; post-processing facilities.

0.3: First distributed version.

Appendix G: Copyright and credits 131

Appendix G Copyright and credits
GetDP is copyright (C) 1997-2022
Patrick Dular
and

Christophe Geuzaine
<cgeuzaine at uliege.be>

University of Liege

Major code contributions to GetDP have been provided by Johan Gyselinck, Ruth
Sabariego, Michael Asam, Bertrand Thierry, Francois Henrotte, Guillaume
Dem\’esy. Other code contributors include: David Colignon, Tuan Ledinh, Patrick
Lefevre, Andre Nicolet, Jean-Francois Remacle, Timo Tarhasaari, Christophe
Trophime, Marc Ume, Peter Binde and Louis Denis. See the source code for more
details.

Thanks to the following folks who have contributed by providing fresh ideas on
theoretical or programming topics, who have sent patches, requests for changes
or improvements, or who gave us access to exotic machines for testing GetDP:
Olivier Adam, Alejandro Angulo, Geoffrey Deliege, Mark Evans, Philippe Geuzaine,
Eric Godard, Sebastien Guenneau, Daniel Kedzierski, Samuel Kvasnica, Benoit
Meys, Uwe Pahner, Georgia Psoni, Robert Struijs, Ahmed Rassili, Thierry
Scordilis, Herve Tortel, Jose Geraldo A. Brito Neto, Matthias Fenner, Daryl Van
Vorst, Marc Boul.

The AVL tree code (src/common/avl.*) is copyright (C) 1988-1993, 1995 The Regents
of the University of California. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting
documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without
specific, written prior permission. The University of California makes no
representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

The KissFFT code (src/numeric/kissfft.hh) is copyright (c) 2003-2010 Mark
Borgerding. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer. * Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with

132 GetDP 3.6.0 (development version)

the distribution. * Neither the author nor the names of any contributors may be
used to endorse or promote products derived from this software without specific
prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

The picojson code (src/common/picojson.h) is Copyright 2009-2010 Cybozu Labs,
Inc., Copyright 2011-2014 Kazuho Oku, All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This version of GetDP may contain code (in the contrib/Arpack subdirectory)
written by Danny Sorensen, Richard Lehoucq, Chao Yang and Kristi Maschhoff from
the Dept. of Computational & Applied Mathematics at Rice University, Houston,
Texas, USA. See http://www.caam.rice.edu/software/ARPACK/ for more info.

This version of GetDP may contain code (in the contrib/Sparskit subdirectory)
copyright (C) 1990 Yousef Saad: check the configuration options.

Appendix H: License 133

Appendix H License

GetDP is provided under the terms of the GNU General Public License
(GPL), Version 2 or later.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. QOur General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

134 GetDP 3.6.0 (development version)

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program) .
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Appendix H: License

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditioms:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

it.

135

136 GetDP 3.6.0 (development version)

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by

Appendix H: License 137

modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the

138 GetDP 3.6.0 (development version)

original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

Appendix H: License 139

POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. 0f course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

140 GetDP 3.6.0 (development version)

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

Concept index

Concept index

‘msh’ file ..o 111
Sopre’file ..o 112
Cres’file ..o 112

A

Acknowledgments ...l 131
Analytical integration 35
Approximation spacesc.oii.... 32
Arguments 22
Arguments, definition.............. 24
Axisymmetric, transformation 34

B

Basis Functions............. ...t 32
Binary operators ool 20
Boundary conditions........... oo 31
Boundary Element Method 6
Bugs, reporting........ ... o 7
Built-in functions............. oL 22

C

Change of coordinates 34
Changelog. o i 125
Circuit equationst 31
Command line options......................... 11
COMIMENES . .. v vttt 15
Complete examples ... 91
Complex-valued, system 38
Concepts, iIndexovoeeiiiiii i 141
Conditionals............ oo i 27
Constant, definition 16
Constant, evaluation..............., 16
Constraint, definition.......................... 31
Constraint, examplest 7
Constraint, types.......... ... 54
Contributors, list.............co i 131
Coordinate change............................. 34
Copyright. ... 3, 131
Credits. ..o 131
Curl. .o 25
Current values. ..., 23

D

Dependences, objects 5
Derivative, exterioroooiiiiin... 25
Derivative, time o i 36
Developments, future 6
Differential operators.......................... 25

Discrete function spacesco.. 32

141
Discrete quantities............... .. i 25
Discretized Geometry.......................... 29
Divergence il 25
Document syntax.............ccoiiiiiiia.. 9
Download............ ..o i i 1,3
E
Edge element space, example 84
Efficiency, tips. ..o 123
Electromagnetism 6
Electrostatic formulation 83
Elementary matrices............. 36
Entities, topological 29
Equations oo o 36
Evaluation mechanism......................... 16
Evaluation, order............ oL 22
Examples, complete L 91
Examples, short 75
Exporting results.............. 41
Expression, definition.......................... 15
Exterior derivative.......... ... 25
F
FAQ . 121
Fields 25
File, “msh’. o 111
File, “.pre’ i 112
File, ‘.res’ ..o 112
File, comment i 15
File, include......... ... i i 15
File, mesh........... 111
File, pre-processing.............coiiiiiiiii.. 112
File, result o 112
Finite Difference Method 6
Finite Element Method 6
Finite Volume Method 6
Floating point numbers........................ 16
Floating potential, example.................... 84
Format, output............ 41
Formulation, definition 36
Formulation, electrostatics..................... 83
Formulation, examples......................... 83
Formulation, types o L 58
Frequency........... ool 38
Frequently asked questions 121
Function groups........... oo 29
Function space, definition...................... 32
Function space, examples...................... 78
Function space, types............. ... oo 55
Function, definition 22, 30
Function, examples................ 75
Future developments................... 6

142

G

Gauss, integrationl 35
Geometric transformations..................... 34
Global quantity............coooiiiiiiiiii. 36
Global quantity, example 84
Gmsh, examples................o o 115
Gmsh, file format........... 111
Gradient ... 25
Grid. .o 29
Group, definitiono 29
Group, examples 75
Group, tyPeS « ..ottt 43

H

Hierarchical basis functions.................... 32
History, versions.............................. 125

I

Includes........ooo i 15
Index, concepts......... L 141
Index, metasyntactic variables................ 145
Index, syntax......... il 147
Input file format.............. 111
Integer numbers....... ... 16
Integral Equation Method 6
Integral quantityol 36
Integration, definition............ 35
Integration, examples.................. 83
Integration, types...........co i 58
Internet address. ..., 1,3
Interpolation........... 25, 32
Introduction......... 5
Tterative loop..... ... 38

J

Jacobian, definition............ oo 34
Jacobian, examples............... oo 82
Jacobian, types........ ...l 57

K

Keywords, index.............................. 147

L

License ... 3, 133
Linear system solving.......................... 38
Linking, objects i 5
Local quantity........ oL 36
LoopS v 27

GetDP 3.6.0 (development version)

Maps. ..o 41
Matrices, elementary 36
Mechanics 6
Mesh. ... 29
Mesh, examples i 115
Mesh, file format 111
Metasyntactic variables, index................ 145
Method of Moments, 6

N

Networks 31
Newmark, time scheme 38
Newton, nonlinear scheme 38
Nodal function space, example................. 83
Nonlinear system solving 38
Numbers, integer i 16
Numbers, real i i 16
Numerical integration.......................... 35

O

Objects, definition.......................... ... 29
Objects, dependences..............cooveieainnn. 5
Objects, tyPes . ..o 43
Operating system.......... oo 11
Operation, priorities................. 22
Operators, definition........................... 20
Operators, differential 25
Options, command line........................ 11
Order of evaluation................. 22
Output file format............................ 111
OVEIVIEW .« o oottt e 5

P

Parameters.......... .o i 22
Parse.o 27
Philosophy, generalol 5
Physical problemsl 6
Picard, nonlinear scheme 38
Piecewise functions 22, 30
Platforms ... 11
Post-operation, definition...................... 41
Post-operation, examples 88
Post-operation, types..................oooL 68
Post-processing, definition 39
Post-processing, examples...................... 88
Post-processing, types ... 68
Priorities, operations 22
Processing cycle oo 5
Q

Quantities, discrete..........o L. 25
Quantity, global 36
Quantity, integral........... L 36

Quantity, local oo 36

Concept index

Quantity, post-processing...................... 39
Questions, frequently asked................... 121

R

Reading, guidelines 9
Real numbers............ L. 16
Region groups..........ol 29
Registers, definition 24
Relaxation factor.......... oL 38
Reporting bugs............... ..o 7
Resolution, definition.......................... 38
Resolution, examples 85
Resolution, types.............ooiiiiL 59
Results, exploitation................ 39
Results, export oo oL 41
Rules, syntactic.................o oo 9
Run-time variables, definition.................. 24
Running GetDP oo 11

S

Scopeof GetDP 6
SECtiONS .« vt vt 41
Short examples. 75
Solving, system.......... 38
Spaces, discrete. ... 32
SEEING .o 16
Symmetry, integral kernel...................... 36
Syntax, indexcooiiiiiiiiiiiii.. 147
Syntax, rules o 9

System, definition 38

143
T
Ternary operators 20
Thermics 6
Theta, time scheme............................ 38
Time derivative.o, 36
Time stepping.........cooooii i 38
Time, discretization 38
TipS. o 123
Tools, order of definition........................ 5
TOPOLOZY - oo 29
Transformations, geometric.................... 34
Tree. ..o 29
Tricks . oo 123
Types, definition 43
Unary operators................oooiiiian... 20
User-defined functions......................... 30
\%
Values, currentcooiiiiiieiiiine... 23
Variables, index ... 145
Versions. ... 125
Web site....coooiii i 1,3
WikKi .o 91

Metasyntactic variable index

Metasyntactic variable index

.. 9
... 9
<
o D e 9
| 9
affectationooiiiiiniii i 16
argumento i il i i 24
basis-function-id 32
basis-function-1iStc.ociueinno... 32
basis-function-type 32, 55
built-in-function-idccuuuiueinn.. 22
COCT—=2d ot et 32
constant—derl i 16
constant—idu i 16
constraint-case-—idiiiiiiaii... 31
constraint-case-valciiiiiiiiinin. 31
constraint—idiiiiiii 31
constraint-typecoiiiiii... 31, 54
constraint-valouuiiiiiiiia 31
coord-function=id, 50
element-type 35, 58
Bl C e e 9
@XPTESSION .\ 15
expression-char.............................. 16
eXpression=Cstiiiiiiiiiia 16
expression-cst-1ist 16
expression-cst-list-item 16
expression—list................, 15
extended-math-function-id 46
formulation=-idccuuiiiiiienennnn.. 36

145
formulation-1ist, 38
formulation-type 36, 58
function-id ool 30
function-space-id 32
function-space-typeo.... 32, 55
global-quantity-id 32
global-quantity-type 32, 55
green-function-id 47
group—def il 29
group—id.......... i 29
group-list i 29
group-list-item..................... 29
group-sub-type............ ... 29
group—type 29, 43
integer 16
integral-value.................c.oiiiiiia.. 39
integration-id............... 35
integration-type 35, 58
jacobian-id ... 34
jacobian-type 34, 57
Jocal-term=typeccovviiiiiiiniii.. 36, 58
local-value ... 39
o < 27
math-function-id 44
misc-function-id 50
operator-binary.............................. 20
operator-ternary-left 20
operator-ternary-right...................... 20
OPEratoOr—UNALYY . ..o 20
post-operation-fmt 41, 74
post-operation=idciiiiiiinnn. 41

POSt—0peration=opc.oeeuuuuiuunnnnnn. 41

146

post-processing=id 39
post—quantity-idiiiiiiiiiiiiia 39
post—quantity-type, 39
post-value.......................... ... 39, 68
print-option 41, 69
Print-supportciiiiiiiiiiiia, 41, 68
Q

quantity............. i 25
quantity-dof il 25
quantity-id 25
quantity—operatorc..eiiiiiiiin. 25
quantity-type ... 36, 58

register—get i 24
register-set il 24

GetDP 3.6.0 (development version)

resolution—ido 38
resolution=op 38, 59

S

SEXING oo 16
string=id 16
sub-space-idl 32
system—id L 38
SYSTEmM=tYPE .. oovviiii it 38

T

term-op-type ... 36, 58
type-function-id 48

vV

variable=getouiiiiii i 24
variable—sSett 24

Syntax index

Syntax index

#expression—cst....................
#include..............l

$Eigenvaluelmag....................
$EigenvalueReal
$integer.......... it
$Iteration................

147
ettt ettt e e, 20
—adapt 12
SbAn 13
—CACRE . . 12
—CAL e 11
—CheCK . 13
TCPU Lttt 13
—gmshread..........oooiiiiiiiiiiiiiiiiiii 12
“help o 13
—Anfo . 13
SISh L 11
-msh_scaling 12
s o -1 111 12
—onelab 13
SO AT L it s 12
P e 13
TPOS 11
TPT 11
TPTOBTESS . vttt 13
B 2= TSP 12
—restart 12
—setnumber.......... 13
-setstring............. 13
m8LEPC L 12
S80IV L e 12
—S0LVeT o 12
—SPATSITY . 12
—sparsity-once.................iiiiiiiia.., 12
—split ... 12
2SS 13
272 13
—VerboSe . .. 13
B 2= o= o) o P 13
L e 20
E K 15
[15
N 20
<
e e 20
K e e 20
Qo et e 20

T e 20

148

>

D 20
D 20
> 20
?

M 20
S 20
P 20
P 20
P 16
0

OD . .t 16
1

1D 16
2

2D 16
3

D 16
Abs. ... 45
Acos ... 45
Adapto 72
Adaptation............ol 74
AliasOf o 56
ALY ..o 29, 34
Analytic..........l 35
Append............... 31, 32, 34, 35, 36, 38, 39, 41
AppendExpressionFormat...................... 71
AppendExpressionToFileName 71
AppendStringToFileName...................... 71
AppendTimeStepToFileName 71
AppendToExistingFile........................ 70
AppPly ..o 61
Asin ... 44
Assign........ ...l 54
AssignFromResolution........................ 54
AssociatedWith........................... ..., 57

GetDP 3.6.0 (development version)

Atan ... 45
Atan2 45
AtGaussPoints it 70
AtIndex ...t 51
B

BasisFunction.............. il 32
BE 25
BF_CurlEdgeol 55
BF_CurlGroupOfEdges 56
BF_CurlGroupOfPerpendicularEdge 56
BF_CurlPerpendicularEdge 56
BF_dGlobal..........oiiiniiiiiiiiiiiiinnn, 56
BF_DivFacet i 55
BF_DivPerpendicularFacet 56
BF Edge...........oii 55
BE _Facetoviiiii et et e 55
BF_Global...........ooiiiiiiiiiiiiii i 56
BF_GradGroupOfNodescoouvunnn. 56
BF_GradNodeciiiiiiiiiinnnn, 55
BF_GroupOfEdges.............coooiiiiiiin, 56
BF_GroupOfNodes..................., 55
BF_GroupOfPerpendicularEdge................ 56
BE_NOd@ ..ottt 55
BE_NodeXo 56
BE_NodeYo 56
BE_NodeZ. ... e 56
BF_One ..ot 56
BF_PerpendicularEdge 56
BF_PerpendicularFacet....................... 56
BF _RegIOon. ...t 56
BF_RegionX............... ... 56
BF_RegionY...... i 56
BF_RegionZ............ i il 56
BE_Volume.......ooiiiuuniiiiiiiiiiiiiiinn, 55
BE _ZerO ..ot 56
Break 64
C

Call string | expression-char; 27
Cart2Cyl ... 49
Cart2Pol............... 48
Cart2Sph................ i 49
CaSe .o i it 31, 34, 35
Cell .o 45
ChangeOfCoordinates 72
ChangeOfValuesoouviiininnineennnnnn.. 72
Closedottt 71
Color ... 71
CompElementNum....................ooiinnnn. 51
CompleX ..o 48
Complex_MH......... ..o, 48
ComplexScalarFielduunn. 52
ComplexTensorFieldouue. 52
ComplexVectorFielduue. 52

CompX ... 49

Syntax index

CompXX ..o 49
CompXY .. 49
CompXZ ..o 49
CompY ... 49
CompYX ... 49
CompYY .o 49
CompYZ ... 49
COMPZ . o oo 49
CompZX ... 49
COMPZY .o ettt 49
COMPZZ . . v 49
COM ottt 48
Constraint................oooiiiiia... 31, 32
CopyResidual 62
CopyRightHandSide............................ 62
CopySolution 62
Lo 44
COS_WE_P.vvvvi 47
Cosh .. 45
CreateDir | CreateDirectory................. 67
CreateSolution..........................o.a 61
Criterion........ ..ot 35
CrOSS vttt it e 46
Curl . 26
D

o 25
Dl 26
D2 26
DecomposeInSimplex 72
DefineConstant........................... ... 16
DefineFunction.................o, 30
DefineGroupcoviiiiiiiiiiiiiiia 29
DeleteFile.........ooiiiiiiiiiiiiin.. 67
Depth ... i i i 70
DestinationSystem............................ 38
Det. .o 46
dFunction.......... i il 32
Dimension.uuiiiiiiiiiiiiii 70
dInterpolationAkima......................... 52
dInterpolationBilinear...................... 51
dInterpolationLinear........................ 51
Distance..............ol 53
Div. ..o 26
AIn. 46
Dof .. 25
Dt 59
DtDof ... o 59
DtDofJacNL. ...ttt 59
DEDE .o 59
DtDtDof 59
DualEdgesOf, 44
DualFacetsOft 44
DualNodesOf ..., 44
DualVolumesOft 44
AYn. 46

149
E
EdgesOf i 43
EdgesOfTreeIn.........oouiiiiiiiinnennnnnnn.. 44
Eig. 59
EigenSolve............ i 64
Eigenvaluelegend............................. 73
ElementNum.................................... 51
ElementsOf.......... 43
ElementTable ..., 74
ElementVol......, 50
Else ... 28
ElseIf (expression-cst) 28
ENABLE_ARPACK 119
ENABLE_BLAS_LAPACKt 119
ENABLE_BUILD_ANDROID....................... 119
ENABLE_BUILD_DYNAMIC....................... 119
ENABLE_BUILD_IOS.............coiiiiiiinnn... 119
ENABLE_BUILD_LIB........cooiiriiiiiinennenn. 119
ENABLE_BUILD_SHARED 119
ENABLE_FORTRAN.......... ... it 119
ENABLE_GMSH 119
ENABLE_GSL e 119
ENABLE_KERNEL 119
ENABLE_MMA 119
ENABLE_MPI 119
ENABLE_MULTIHARMONIC....................... 120
ENABLE_NR..... ... 120
ENABLE_NX.o 120
ENABLE_OCTAVEo i 120
ENABLE_OPENMP i, 120
ENABLE_PETSC i 120
ENABLE_PEWE 120
ENABLE_PRIVATE_APIoooou.. 120
ENABLE_PYTHON............ .o, 120
ENABLE_SLEPC i, 120
ENABLE_SMALLFEM........ oiiiiiiin. 120
ENABLE_SPARSKIT..... oottt 120
ENABLE_SYSTEM_CONTRIB...................... 120
ENABLE_WRAP_PYTHON 120
ENABLE_ZITSOLottt 120
EndFor...... ..o i 28
EndIf 28
Entity........oo i 32
EntitySubTypeccoiiiiiiiiiiiiiin, 32
EntityType............... L 32
Equation........... i il 36
Error ... 63
Evaluate......o 63
Exit ... 64
254 o T 44
F
Fabs ... 45
FacetsOf o i 43
FacetsOfTreeIn...................iiiinan. 44
FemEquation 58

Field ... 52

150

File ... oo 69, 70
FlOOT oottt 45
FIOA ..ot 45

For (expression-cst :
For (expression-cst :

expression-cst).... 27
expression-cst

expression=cst)iio.... 27
For string In { expression-cst :

expression-cst : expression-cst }..... 27
For string In { expression-cst :

expression-cst }........... i 27
FormO i 55
Formll 55
FormlP 55
Form2l 55
Form2P ... 55
Form3 55
Format.......... i i 41, 72
Formulation.................. 32, 36
FourierTransform................cooivinnnnn. 64
Frequency............... 38, 71
FrequencylLegend.............................. 73
Function......... ..., 30, 32
FunctionSpace................ 32
G
GaAUSS © oot 58
GaussLegendrecoiiiiiiiiiiiiinnnn. 58
Generate............ . il 59
GenerateGroupcovviiiiiiii 60
GenerateJac i 60
GenerateOnly 60
GenerateOnlyJac.............................. 60
GenerateRightHandSideGroup................. 60
GenerateSeparate.............ooiiiiiiiiiiiin, 60
GeoElement.................. ... 35
GetCpuTime............ 53
GetMemory......... 53

GetNormSolution | GetNormRightHandSide |
GetNormResidual | GetNormIncrement 61

GetNumberRunTime..............ccoviuvininn.n. 53
GetNumElements............viiiininennnnann. 51
GetResidualt 61
GetVariable ...t 53
GetVolume..........oiuiini i 51
GetWallClockTime.oovvnieneeennn 53
Global... ..ottt 43, 59
GlobalEquation................ ...l 36
GlobalQuantity...................ooiiiia 32
GlobalTerm. .. ovvt ettt 36
GISH .« ottt 74
GmshClearAll ..., 67
GmshParsed..........cooiiiiiniiieiinenennn. 74
GmshRead. ...t 67
GmshWrite...... ..o 67
Gnuplot 74
Grad ..o 26
GradHelmholtzo, 47

GetDP 3.6.0 (development version)

GradLaplaceooiiiiiiiiiiii... 47
GIOUD . ¢ vttt 29, 32
GroupOfRegionsOf............... 43
GroupsOfEdgesOf ..., 43
GroupsOfEdgesOnNodesOf 43
GroupsOfNodesOf 43

H

HarmonicToTimecoiuirninenninennnnn. 70
Helmholtz..... ..ot 47
Hexahedron............ ..., 58
Hiddem.........cooiiiiiii i 71
Hypot ... 46

If (expression=cst)........................ 28
P 48
5 P 36, 39
Include.......cooiiiiiiiiiiiii 15
IndexOfSystem.............. 36
Init oo 54
InitFromResolution 54
InitSolution, 61
InitSolutionl 61
Integral.........cooviiiiiiiiiinainnnn. 39, 59, 68
Integration............cooviiuunnnnnn. 35, 36, 39
InterpolationAkimaoooiiiiin, 51
InterpolationBilinear....................... 51
InterpolationlLinear 51
Interval.........oiiuiiiiiiiiiii . 47
IOV . ettt e 46
IS0 .ttt 72
IterativelLinearSolver....................... 66
Iterativeloop.......... ..., 66
IterativeLoopN............, 66

JacNL .. 59
Jacobian...................o ool 34, 36, 39
¢ N 46

LanCZOS .ottt et 64
Laplace ...ttt 47
LastTimeStepOnly.............ooiviiiiiinna. .. 70
LevelTest ...ttt 28
Lin. . 57
Lineo 58
Link ..o 54
LinkCplx.o 55
List ..o 16
ListAlt ... o 16
Local ...ttt 39, 59, 68

e 44

Syntax index

... 27
Macro string | expression-char 27
=P 45
Mmoo 45
MPI _Barrie@r ...ttt 68
MPI_BroadcastFieldscuvuuninn.. 68
MPI_BroadcastVariables...................... 68
MPI_SetCommSelf..........., 68
MPI_SetCommWorld..................ccvoniun.... 68
N
Name 31, 32, 34, 35, 36, 38, 39, 41
Name | Labelcoouuuuiiiiiiiiiiiaaannnn 70
NameOfBasisFunction......................... 32
NameOfCoef...... ...t 32
NameOfConstraint 32, 36
NameOfFormulation........................ 38, 39
NameOfMesh.ot 38
NameOfPostProcessing........................ 41
NameOfSpace ..., 36
NameOfSystem........... 39
Network ...t 36, 54
NeverDt ... 59
NOAE o vttt 36
NodesOf 43
NodeTable..ot 74
NoMesh ..ot 71
NoNewLine........ooviiiiiii e, 72
NOXm vttt 46
Normaloitii e 50
NOrmalSourcCeovvt it 50
NumberOfPointsooviiiiniiin i, 35
O
OnBOX .ot 69
OnElementsOf, 68
OnGlobal ...t 68
OnGridot e 69
OnLine ..ot 69
OnPlane ..ot 69
OnPoint ... 69
OnRegion..........ooiiiiiiiiiiiiiiiiiiiiiias 68
OnSection.ot 68
Operation................ 38, 41
Order ...t 52
OriginSystem................................. 38
OverrideTimeStepValue....................... 71

151
P
Parse [expression-char J; 28
Period.........iiiii 47
P 16
Podnt ..o 58
PostOperationcooiiinnnn.. 41, 67
PostProcessing.............................. 39
Print....... .o 41, 64
Printf 50
PrisSm .ot 58
Pyramid............ 58
Q
Quadrangle..........l 58
QuadraturePointIndex 51
Quantity............. ... il 32, 36, 39
R
Randt 50
Re . 48
ReadTable.........ooiuiiiiiiiiiii .. 67
Region...............l 31, 34, 43
RemoveLastSolution 63
RenameFile.........oouiiiiieiiiinnennnnn.. 67
Residual......... ..o, 62
Resolution..............o..ooiiiiiit, 32, 38
REtUTI ..ottt 27
ROt . o 26
Rotateo 46
S
SaveSolutionl 62
SaveSolutionsoiiiiiiiii 63
Scalar ..ot 55
ScalarFieldt 52
SendToServVer ..o vttt 71
SetDTime . ..ot 63
SetExtrapolationOrder....................... 64
SetFrequency 63
SetGlobalSolverOptions...................... 60
SetNumberRunTime...............cooviinennnn... 53
SetNumberRunTimeWithChoices................ 53
SetRightHandSideAsSolution................. 62
SetSolutionAsRightHandSide................. 62
SetTimeo 63
SetTimeStep ... 63
SetVariable 53
S 3=« 45
SimpleTable 74
S+ 44
SIn_WE_DP..ooiii 47
Sinh .. 45
SRAN « ettt 70
Sleep ..o 64

152

SOLVe ..o 59
SolveAgain.............. ...l 59
SolveJac. ...ttt 60
Solver ... 38
SOTE c 72
ST o 44
SquDyadicProduct................ 48
SQUNOTI . .. 46
StoreInField...................... 73
StoreInMeshBasedField....................... 73
StoreInRegister.............coviiiiiiiennnn. 73
StoreInVariable............................n 72
StoreMaxInRegister 73
StoreMaxXinRegister 73
StoreMaxYinRegister......................... 73
StoreMaxZinRegister 73
StoreMinInRegister 73
StoreMinXinRegister 73
StoreMinYinRegister 73
StoreMinZinRegister 73
SubRegion............. i il 31
SubSpace............... 32
SUpPpPOTrt 32
UL . e 57
SurAxi ... 57
SurfaceArea 51
SwapSolutionAndResidual..................... 61
SwapSolutionAndRightHandSide............... 61
SYymmetrycooinii 36
System ... 38
SystemCommand 63
T

Table i 74
Tan. ... 45
Tangent ... 50
TangentSource.............. il 50
Tanh ... 45
TanhC2 ... 45
Target ... 72
TeNSOT ..\ 48
TensorDiag........c.ooviiiiiiiiiiiii .. 48
TensorField ..., 52
TensorSym......... ... 48
TensorV..... ..o 48
Test .o 63
Tetrahedronl 58
TimeFunction........... L 31
TimeImagValue 70
TimeLegend................. L. 73
TimeLoopAdaptive...........cooiiiiuinnnnnnnn, 65
TimeLoopNewmark............. 65
TimeLoopTheta......... ..., 65
TimeStep. ... 70

TimeTable. ...ttt 74

GetDP 3.6.0 (development version)

TimeValue.ouiiiniiiinii i 70
TransferSolution............. ..o, 63
TransSpoOSe. ... 46
Triangle............ .. i 58
1 - o = Pt 46
TYPC e oottt 31, 32, 35, 36, 38
U

Unit o 46
Units oo 71
UnitVectorX ... 49
UnitVectorYot 49
UnitVectorZ ... 50
Update ... 60
UpdateConstraint............................. 61
UsingPost............. ... 41

Value. ... 39, 72
ValueFromIndexc.ovuuiininninennnnann. 53
ValueFromMapcoooiiiii.a 54
ValueFromTablecooiiiiieininnnnann. 54
Vector... ... 48, 55
VectorField ..., 52
VectorFromIndexX..........c.covuiiiiininennnnn.. 54
7 PP 57
VOLARI oot 57
VolAxiRectShell........... ..., 58
VolAxiSphShelloiiiiiiiniiieannn. 57
VolAxiSqu...........o.ooiiiiii 57
VolAxiSquRectShell 58
VolAxiSquSphShell............................ 57
VolCylShello 57
VolRectShell i 57
VolSphShell 57
VolumesOft 43
W

While ..o e 63
X

K e 50
XY Z e 50
Y

Y 50
Yo 46
Z
e 50

	Obtaining GetDP
	Copying conditions
	Overview
	Numerical tools as objects
	Which problems can GetDP actually solve?
	Bug reports

	How to read this manual
	Syntactic rules used in this document

	Running GetDP
	Expressions
	Comments
	Includes
	Expressions definition
	Constants
	Operators
	Operator types
	Evaluation order

	Functions
	Current values
	Arguments
	Run-time variables and registers
	Fields
	Macros, loops and conditionals

	Objects
	Group: defining topological entities
	Function: defining global and piecewise expressions
	Constraint: specifying constraints on function spaces and formulations
	FunctionSpace: building function spaces
	Jacobian: defining jacobian methods
	Integration: defining integration methods
	Formulation: building equations
	Resolution: solving systems of equations
	PostProcessing: exploiting computational results
	PostOperation: exporting results

	Types for objects
	Types for Group
	Types for Function
	Math functions
	Extended math functions
	Green functions
	Type manipulation functions
	Coordinate functions
	Miscellaneous functions

	Types for Constraint
	Types for FunctionSpace
	Types for Jacobian
	Types for Integration
	Types for Formulation
	Types for Resolution
	Types for PostProcessing
	Types for PostOperation

	Short examples
	Constant expression examples
	Group examples
	Function examples
	Constraint examples
	FunctionSpace examples
	Nodal finite element spaces
	High order nodal finite element space
	Nodal finite element space with floating potentials
	Edge finite element space
	Edge finite element space with gauge condition
	Coupled edge and nodal finite element spaces
	Coupled edge and nodal finite element spaces for multiply connected domains

	Jacobian examples
	Integration examples
	Formulation examples
	Electrostatic scalar potential formulation
	Electrostatic scalar potential formulation with floating potentials and electric charges
	Magnetostatic 3D vector potential formulation
	Magnetodynamic 3D or 2D magnetic field and magnetic scalar potential formulation
	Nonlinearities, Mixed formulations, ...{}

	Resolution examples
	Static resolution (electrostatic problem)
	Frequency domain resolution (magnetodynamic problem)
	Time domain resolution (magnetodynamic problem)
	Nonlinear time domain resolution (magnetodynamic problem)
	Coupled formulations

	PostProcessing examples
	PostOperation examples

	Complete examples
	Electrostatic problem
	Magnetostatic problem
	Magnetodynamic problem

	File formats
	Input file format
	Output file format
	File .pre
	File .res

	Gmsh examples
	Compiling the source code
	Frequently asked questions
	The basics
	Installation
	Usage

	Tips and tricks
	Version history
	Copyright and credits
	License
	Concept index
	Metasyntactic variable index
	Syntax index

